Parameter space methods in joint parameter estimation for groundwater flow models

被引:22
|
作者
Weiss, R [1 ]
Smith, L [1 ]
机构
[1] Univ British Columbia, Dept Earth & Ocean Sci, Geol Engn Program, Vancouver, BC V6T 1Z4, Canada
关键词
D O I
10.1029/97WR03467
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The joint estimation of model parameters using hydraulic head and tracer concentration data is examined using methods based on parameter space analysis. Response surfaces and confidence regions can indicate how multiple data sets interact to reduce parameter uncertainty. Each data set produces a unique response surface and confidence region. If these surfaces are oriented differently for the two data sets, parameter uncertainties are significantly reduced when the second data set is included in the inversion. If these surfaces are similar for the two data sets, the second data set will not reduce the parameter uncertainty significantly. The axes of the linearized confidence ellipsoid are analyzed to determine the difference in orientation of the confidence regions for the two data sets. The use of confidence regions can be extended to predict the value of a second data set in reducing the uncertainty of parameter estimates, before the data are collected. Parameter space approaches are also introduced for selecting the relative weights for the individual data sets in joint parameter estimation. The conventional method based on the analysis of data residuals is compared to three other methods: with the weights selected to maximize parameter stability, to minimize the volume of the confidence region, or to minimize the longest axis of the confidence region. Each criterion can lead to substantially different weights applied to each of the data sets. The application of these methods is demonstrated using hydraulic head measurements and C-14 concentrations to calibrate a model of groundwater flow in the San Juan Basin, New Mexico.
引用
收藏
页码:647 / 661
页数:15
相关论文
共 50 条
  • [1] On Particle Methods for Parameter Estimation in State-Space Models
    Kantas, Nikolas
    Doucet, Arnaud
    Singh, Sumeetpal S.
    Maciejowski, Jan
    Chopin, Nicolas
    [J]. STATISTICAL SCIENCE, 2015, 30 (03) : 328 - 351
  • [2] Parameter estimation for groundwater models by indicator kriging
    Schafmeister, MT
    [J]. GEOENV I - GEOSTATISTICS FOR ENVIRONMENTAL APPLICATIONS, 1997, 9 : 165 - 176
  • [3] UNIFIED APPROACH TO PARAMETER-ESTIMATION OF GROUNDWATER MODELS
    KITANIDIS, P
    LENTON, RL
    WILSON, JL
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1976, 57 (12): : 911 - 911
  • [4] Parameter estimation in general state-space models using particle methods
    Arnaud Doucet
    Vladislav B. Tadić
    [J]. Annals of the Institute of Statistical Mathematics, 2003, 55 : 409 - 422
  • [5] Parameter estimation in general state-space models using particle methods
    Doucet, A
    Tadic, VB
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2003, 55 (02) : 409 - 422
  • [6] Joint channel and space-time parameter estimation
    Cedervall, M
    Paulraj, A
    [J]. THIRTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1997, : 375 - 379
  • [7] Parameter estimation methods for single neuron models
    Tabak, J
    Murphey, CR
    Moore, LE
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2000, 9 (03) : 215 - 236
  • [8] Computational Methods for Parameter Estimation in Climate Models
    Villagran, Alejandro
    Huerta, Gabriel
    Jackson, Charles S.
    Sen, Mrinal K.
    [J]. BAYESIAN ANALYSIS, 2008, 3 (04): : 823 - +
  • [9] Parameter Estimation Methods for Single Neuron Models
    Joël Tabak
    C. Richard Murphey
    L.E. Moore
    [J]. Journal of Computational Neuroscience, 2000, 9 : 215 - 236
  • [10] Methods for Parameter Estimation in Wine Fermentation Models
    Coleman, Robert
    Nelson, James
    Boulton, Roger
    [J]. FERMENTATION-BASEL, 2024, 10 (08):