Parameter estimation using optimization methods in land subsidence models

被引:0
|
作者
Esaki, T [1 ]
Zhou, GY [1 ]
Jiang, YJ [1 ]
机构
[1] Kyushu Univ, Inst Environm Syst, Fukuoka 81281, Japan
关键词
D O I
暂无
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Mathematical models can be used to predict the magnitude and the rate of land subsidence in alluvial aquifer systems. In general, mathematical models simplify the variability of geologic and hydrologic systems. The accuracy of subsidence estimates from such models is dependent, among other things, on realistic values for geologic, hydraulic, and deformation parameters used in the models. These parameters have some degree of uncertainty; moreover, parameters determined from laboratory tests usually cannot reflect the complicated structure of deforming layers. These factors affect the accuracy and reliability of land subsidence predictions. Optimization methods were used to determine the parameters necessary for simulating ground-water flow and land subsidence in the Saga Plain in coastal Japan. Using optimal parameters, which account for variability in geologic and hydrologic systems, model results compare favorably with field observations. The model has become an useful tool for government agencies that must mitigate subsidence.
引用
收藏
页码:249 / 255
页数:7
相关论文
共 50 条
  • [31] Shooting Methods for Parameter Estimation of Output Error Models
    Ribeiro, Antonio H.
    Aguirre, Luis A.
    IFAC PAPERSONLINE, 2017, 50 (01): : 13998 - 14003
  • [32] Estimation Methods for One-Parameter Testlet Models
    Jiao, Hong
    Wang, Shudong
    He, Wei
    JOURNAL OF EDUCATIONAL MEASUREMENT, 2013, 50 (02) : 186 - 203
  • [33] Review of computational parameter estimation methods for electrochemical models
    Miguel, E.
    Plett, Gregory L.
    Trimboli, M. Scott
    Oca, L.
    Iraola, U.
    Bekaert, E.
    JOURNAL OF ENERGY STORAGE, 2021, 44
  • [34] Land Subsidence Modeling and Simulation Methods Using Peridynamics and Deep Learning
    Cheng, Siyuan
    Guan, Zhibo
    Gong, Huili
    Li, Xiaojuan
    Zhang, Ke
    Wang, Che
    Lyu, Mingyuan
    Guo, Lin
    Wang, Lin
    Liu, Yizhe
    Journal of Geo-Information Science, 2025, 27 (01) : 181 - 192
  • [35] Land subsidence susceptibility assessment using advanced artificial intelligence models
    Yu, Hairuo
    Arabameri, Alireza
    Costache, Romulus
    Craciun, Anca
    Arora, Aman
    GEOCARTO INTERNATIONAL, 2022, 37 (27) : 18067 - 18093
  • [36] Detection of land subsidence using hybrid and ensemble deep learning models
    Kariminejad, Narges
    Mohammadifar, Aliakbar
    Sepehr, Adel
    Garajeh, Mohammad Kazemi
    Rezaei, Mahrooz
    Desir, Gloria
    Quesada-Roman, Adolfo
    Gholami, Hamid
    APPLIED GEOMATICS, 2024, 16 (03) : 593 - 610
  • [37] Parameter estimation in stochastic chemical kinetic models using derivative free optimization and bootstrapping
    Srivastava, Rishi
    Rawlings, James B.
    COMPUTERS & CHEMICAL ENGINEERING, 2014, 63 : 152 - 158
  • [38] Parameter optimization of influence functions in mining subsidence
    Garcia, AB
    Mere, JO
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1997, 34 (07): : 1125 - 1131
  • [39] RaPId - A Parameter Estimation Toolbox for Modelica/FMI-Based Models Exploiting Global Optimization Methods
    Podlaski, Meaghan
    Vanfretti, Luigi
    Bogodorova, Tetiana
    Rabuzin, Tin
    Baudette, Maxime
    IFAC PAPERSONLINE, 2021, 54 (07): : 391 - 396
  • [40] Toward improved parameter estimation of land surface hydrology models through the Model Parameter Estimation Experiment (MOPEX)
    Schaake, J
    Duan, QY
    Koren, V
    Hall, A
    SOIL-VEGETATION-ATMOSPHERE TRANSFER SCHEMES AND LARGE-SCALE HYDROLOGICAL MODELS, 2001, (270): : 91 - 97