Isometry groups of inductive limits of metric spectral triples and Gromov-Hausdorff convergence

被引:2
|
作者
Bassi, Jacopo [1 ]
Conti, Roberto [2 ]
Farsi, Carla [3 ]
Latremoliere, Frederic [4 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Rome, Italy
[2] Sapienza Univ Roma, Dipartimento SBAI, Rome, Italy
[3] Univ Colorado, Dept Math, Boulder, CO USA
[4] Univ Denver, Dept Math, Denver, CO 80208 USA
关键词
C-ASTERISK-ALGEBRAS; FREDHOLM MODULES; DIRAC OPERATORS;
D O I
10.1112/jlms.12787
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the groups of isometries and the set of bi-Lipschitz automorphisms of spectral triples from a metric viewpoint, in the propinquity framework of Latremoliere. In particular, we prove that these groups and sets are compact in the automorphism group of the spectral triple C*-algebra with respect to the Monge-Kantorovich metric, which induces the topology of pointwise convergence. We then prove a necessary and sufficient condition for the convergence of the actions of various groups of isometries, in the sense of the covariant version of the Gromov-Hausdorff propinquity, a noncommutative analogue of the Gromov-Hausdorff distance, when working in the context of inductive limits of quantum compact metric spaces and metric spectral triples. We illustrate our work with examples including AF algebras and noncommutative solenoids.
引用
收藏
页码:1488 / 1530
页数:43
相关论文
共 50 条
  • [21] Lorentzian metric spaces and their Gromov-Hausdorff convergence (vol 114, 73, 2024)
    Minguzzi, E.
    Suhr, S.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (04)
  • [22] Computing the Gromov-Hausdorff Distance for Metric Trees
    Agarwal, Pankaj K.
    Fox, Kyle
    Nath, Abhinandan
    Sidiropoulos, Anastasios
    Wang, Yusu
    [J]. ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 529 - 540
  • [24] Spaces and Gromov-Hausdorff limits of subanalytic spaces
    Bernig, Andreas
    Lytchak, Alexander
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 : 1 - 15
  • [25] A unified framework for generalizing the Gromov-Hausdorff metric
    Khezeli, Ali
    [J]. PROBABILITY SURVEYS, 2023, 20 : 837 - 896
  • [26] Computing the Gromov-Hausdorff Distance for Metric Trees
    Agarwal, Pankaj K.
    Fox, Kyle
    Nath, Abhinandan
    Sidiropoulos, Anastasios
    Wang, Yusu
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2018, 14 (02)
  • [27] Integral bounds on curvature and Gromov-Hausdorff limits
    Chen, X. -X.
    Donaldson, S. K.
    [J]. JOURNAL OF TOPOLOGY, 2014, 7 (02) : 543 - 556
  • [28] Essential circles and Gromov-Hausdorff convergence of covers
    Plaut, Conrad
    Wilkins, Jay
    [J]. JOURNAL OF TOPOLOGY AND ANALYSIS, 2016, 8 (01) : 89 - 115
  • [29] GROMOV-HAUSDORFF CONVERGENCE OF DISCRETE TRANSPORTATION METRICS
    Gigli, Nicola
    Maas, Jan
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (02) : 879 - 899
  • [30] The Gromov-Hausdorff metric on the space of compact metric spaces is strictly intrinsic
    Ivanov, A. O.
    Nikolaeva, N. K.
    Tuzhilin, A. A.
    [J]. MATHEMATICAL NOTES, 2016, 100 (5-6) : 883 - 885