GROMOV-HAUSDORFF CONVERGENCE OF DISCRETE TRANSPORTATION METRICS

被引:28
|
作者
Gigli, Nicola [1 ]
Maas, Jan [2 ]
机构
[1] Univ Nice Sophia Antipolis, Lab JA Dieudonne, F-06108 Nice 02, France
[2] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
关键词
discrete transportation metric; Wasserstein metric; Gromov-Hausdorf convergence; GRADIENT FLOWS; SPACES; EQUATIONS;
D O I
10.1137/120886315
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper continues the investigation of "Wasserstein-like" transportation distances for probability measures on discrete sets. We prove that the discrete transportation metrics W-N on the d-dimensional discrete torus T-N(d) with mesh size (1)(N) converge, when N -> infinity, to the standard 2-Wasserstein distance W-2 on the continuous torus in the sense of Gromov-Hausdorff. This is the first convergence result for the recently developed discrete transportation metrics W. The result shows the compatibility between these metrics and the well-established 2-Wasserstein metric.
引用
收藏
页码:879 / 899
页数:21
相关论文
共 50 条