PyGenePlexus: a Python']Python package for gene discovery using network-based machine learning

被引:2
|
作者
Mancuso, Christopher A. [1 ,2 ]
Liu, Renming [1 ]
Krishnan, Arjun [1 ,3 ]
机构
[1] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[2] Univ Colorado Denver Anschutz Med Campus, Colorado Sch Publ Hlth, Dept Biostat & Informat, Aurora, CO 80045 USA
[3] Univ Colorado Denver Anschutz Med Campus, Dept Biomed Informat, Aurora, CO 80045 USA
基金
美国国家卫生研究院;
关键词
BARDET-BIEDL-SYNDROME; DISEASE; PREDICTION; PRIORITIZATION; TOOL;
D O I
10.1093/bioinformatics/btad064
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
PyGenePlexus is a Python package that enables a user to gain insight into any gene set of interest through a molecular interaction network informed supervised machine learning model. PyGenePlexus provides predictions of how associated every gene in the network is to the input gene set, offers interpretability by comparing the model trained on the input gene set to models trained on thousands of known gene sets, and returns the network connectivity of the top predicted genes. Availability and implementation: https://pypi.org/project/geneplexus/ and https://github.com/krishnanlab/PyGenePlexus. Contact: arjun.krishnan@cuanschutz.edu Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] The cityseer Python']Python package for pedestrian-scale network-based urban analysis
    Simons, Gareth
    [J]. ENVIRONMENT AND PLANNING B-URBAN ANALYTICS AND CITY SCIENCE, 2023, 50 (05) : 1328 - 1344
  • [2] ProPythia: A Python']Python package for protein classification based on machine and deep learning
    Sequeira, Ana Marta
    Lousa, Diana
    Rocha, Miguel
    [J]. NEUROCOMPUTING, 2022, 484 : 172 - 182
  • [3] Geomstats: A Python']Python Package for Riemannian Geometry in Machine Learning
    Miolane, Nina
    Guigui, Nicolas
    Le Brigant, Alice
    Mathe, Johan
    Hou, Benjamin
    Thanwerdas, Yann
    Heyder, Stefan
    Peltre, Olivier
    Koep, Niklas
    Zaatiti, Hadi
    Hajri, Hatem
    Cabanes, Yann
    Gerald, Thomas
    Chauchat, Paul
    Shewmake, Christian
    Brooks, Daniel
    Kainz, Bernhard
    Donnat, Claire
    Holmes, Susan
    Pennec, Xavier
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [4] PyPanda: a Python']Python package for gene regulatory network reconstruction
    van IJzendoorn, David G. P.
    Glass, Kimberly
    Quackenbush, John
    Kuijjer, Marieke L.
    [J]. BIOINFORMATICS, 2016, 32 (21) : 3363 - 3365
  • [5] Glycowork: A Python']Python package for glycan data science and machine learning
    Thomes, Luc
    Burkholz, Rebekka
    Bojar, Daniel
    [J]. GLYCOBIOLOGY, 2021, 31 (10) : 1240 - 1244
  • [6] Causal ML: Python']Python package for causal inference machine learning
    Zhao, Yang
    Liu, Qing
    [J]. SOFTWAREX, 2023, 21
  • [7] Machine learning using Stata/Python']Python
    Cerulli, Giovanni
    [J]. STATA JOURNAL, 2022, 22 (04): : 772 - 810
  • [8] tension: A Python']Python package for FORCE learning
    Liu, Lu Bin
    Losonczy, Attila
    Liao, Zhenrui
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (12)
  • [9] Image Processing and Machine Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python']Python Package
    Rasti, Behnood
    Zouaoui, Alexandre
    Mairal, Julien
    Chanussot, Jocelyn
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [10] ProPythia: A Python package for protein classification based on machine and deep learning
    Sequeira, Ana Marta
    Lousa, Diana
    Rocha, Miguel
    [J]. Neurocomputing, 2022, 484 : 172 - 182