Image Processing and Machine Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python']Python Package

被引:1
|
作者
Rasti, Behnood [1 ]
Zouaoui, Alexandre [2 ,3 ]
Mairal, Julien [2 ]
Chanussot, Jocelyn [2 ]
机构
[1] Tech Univ Berlin, Fac Elect Engn & Comp Sci, D-10623 Berlin, Germany
[2] Univ Grenoble Alpes, Grenoble Inst Technol Grenoble INP, INRIA, CNRS,LJK, F-38000 Grenoble, France
[3] Data Sci Experts, F-38000 Grenoble, France
关键词
Hyperspectral imaging; Mathematical models; Matlab; Reflectivity; !text type='Python']Python[!/text; Image processing; Atmospheric modeling; Abundance estimation; deep learning (DL); endmember extraction; hyperspectral; linear mixture; machine learning (ML); optimization; unmixing; SPECTRAL MIXTURE ANALYSIS; NONNEGATIVE MATRIX FACTORIZATION; INDEPENDENT COMPONENT ANALYSIS; ENDMEMBER VARIABILITY; SPARSE REGRESSION; SPATIAL REGULARIZATION; TENSOR FACTORIZATION; NONCONVEX SPARSE; EXTRACTION; ALGORITHM;
D O I
10.1109/TGRS.2024.3393570
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Spectral pixels are often a mixture of the pure spectra of the materials, called endmembers, due to the low spatial resolution of hyperspectral sensors, double scattering, and intimate mixtures of materials in the scenes. Unmixing estimates the fractional abundances of the endmembers within the pixel. Depending on the prior knowledge of endmembers, linear unmixing can be divided into three main groups: supervised, semi-supervised, and unsupervised (blind) linear unmixing. Advances in image processing and machine learning (ML) substantially affected unmixing. This article provides an overview of advanced and conventional unmixing approaches. In addition, we draw a critical comparison between advanced and conventional techniques from the three categories. We compare the performance of the unmixing techniques on three simulated and one real dataset. The experimental results reveal the advantages of different unmixing categories for different unmixing scenarios. Moreover, we provide an open-source Python-based package available at https://github.com/BehnoodRasti/HySUPP to reproduce the results.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] HYSUPP: AN OPEN-SOURCE HYPERSPECTRAL UNMIXING PYTHON']PYTHON PACKAGE
    Rasti, Behnood
    Zouaoui, Alexandre
    Mairal, Julien
    Chanussot, Jocelyn
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1134 - 1137
  • [2] Geomstats: A Python']Python Package for Riemannian Geometry in Machine Learning
    Miolane, Nina
    Guigui, Nicolas
    Le Brigant, Alice
    Mathe, Johan
    Hou, Benjamin
    Thanwerdas, Yann
    Heyder, Stefan
    Peltre, Olivier
    Koep, Niklas
    Zaatiti, Hadi
    Hajri, Hatem
    Cabanes, Yann
    Gerald, Thomas
    Chauchat, Paul
    Shewmake, Christian
    Brooks, Daniel
    Kainz, Bernhard
    Donnat, Claire
    Holmes, Susan
    Pennec, Xavier
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [3] Glycowork: A Python']Python package for glycan data science and machine learning
    Thomes, Luc
    Burkholz, Rebekka
    Bojar, Daniel
    [J]. GLYCOBIOLOGY, 2021, 31 (10) : 1240 - 1244
  • [4] Causal ML: Python']Python package for causal inference machine learning
    Zhao, Yang
    Liu, Qing
    [J]. SOFTWAREX, 2023, 21
  • [5] PySAP: Python']Python Sparse Data Analysis Package for multidisciplinary image processing
    Farrens, S.
    Grigis, A.
    El Gueddari, L.
    Ramzi, Z.
    Chaithya, G. R.
    Starck, S.
    Sarthou, B.
    Cherkaoui, H.
    Ciuciu, P.
    Starck, J-L
    [J]. ASTRONOMY AND COMPUTING, 2020, 32
  • [6] Python']Python parallel processing for hyperspectral image simulation: based on distance functions
    Peddinti, Veerendra Satya Sylesh
    Mandla, Venkata Ravibabu
    Mesapam, Shashi
    Kancherla, Suresh
    [J]. EARTH SCIENCE INFORMATICS, 2021, 14 (04) : 2221 - 2229
  • [7] ProPythia: A Python']Python package for protein classification based on machine and deep learning
    Sequeira, Ana Marta
    Lousa, Diana
    Rocha, Miguel
    [J]. NEUROCOMPUTING, 2022, 484 : 172 - 182
  • [8] tension: A Python']Python package for FORCE learning
    Liu, Lu Bin
    Losonczy, Attila
    Liao, Zhenrui
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (12)
  • [9] Demystifying the Python']Python-Processing Landscape: An Overview of Tools Combining Python']Python and Processing
    Bunn, Tristan
    Carrasco, Taylor
    [J]. PROCEEDINGS SIGGRAPH 2022 TALKS, 2022,
  • [10] Image Processing in Python']Python with Montage
    Good, John
    Berriman, G. Bruce
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXVIII, 2019, 523 : 685 - 688