Image Processing and Machine Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python']Python Package

被引:1
|
作者
Rasti, Behnood [1 ]
Zouaoui, Alexandre [2 ,3 ]
Mairal, Julien [2 ]
Chanussot, Jocelyn [2 ]
机构
[1] Tech Univ Berlin, Fac Elect Engn & Comp Sci, D-10623 Berlin, Germany
[2] Univ Grenoble Alpes, Grenoble Inst Technol Grenoble INP, INRIA, CNRS,LJK, F-38000 Grenoble, France
[3] Data Sci Experts, F-38000 Grenoble, France
关键词
Hyperspectral imaging; Mathematical models; Matlab; Reflectivity; !text type='Python']Python[!/text; Image processing; Atmospheric modeling; Abundance estimation; deep learning (DL); endmember extraction; hyperspectral; linear mixture; machine learning (ML); optimization; unmixing; SPECTRAL MIXTURE ANALYSIS; NONNEGATIVE MATRIX FACTORIZATION; INDEPENDENT COMPONENT ANALYSIS; ENDMEMBER VARIABILITY; SPARSE REGRESSION; SPATIAL REGULARIZATION; TENSOR FACTORIZATION; NONCONVEX SPARSE; EXTRACTION; ALGORITHM;
D O I
10.1109/TGRS.2024.3393570
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Spectral pixels are often a mixture of the pure spectra of the materials, called endmembers, due to the low spatial resolution of hyperspectral sensors, double scattering, and intimate mixtures of materials in the scenes. Unmixing estimates the fractional abundances of the endmembers within the pixel. Depending on the prior knowledge of endmembers, linear unmixing can be divided into three main groups: supervised, semi-supervised, and unsupervised (blind) linear unmixing. Advances in image processing and machine learning (ML) substantially affected unmixing. This article provides an overview of advanced and conventional unmixing approaches. In addition, we draw a critical comparison between advanced and conventional techniques from the three categories. We compare the performance of the unmixing techniques on three simulated and one real dataset. The experimental results reveal the advantages of different unmixing categories for different unmixing scenarios. Moreover, we provide an open-source Python-based package available at https://github.com/BehnoodRasti/HySUPP to reproduce the results.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] ArtPop: A Stellar Population and Image Simulation Python']Python Package
    Greco, Johnny P.
    Danieli, Shany
    [J]. ASTROPHYSICAL JOURNAL, 2022, 941 (01):
  • [22] Python']Python Machine Learning Case Studies
    Puerta Monsalve, Harry L.
    [J]. CUADERNO ACTIVA, 2018, (10):
  • [23] Machine learning using Stata/Python']Python
    Cerulli, Giovanni
    [J]. STATA JOURNAL, 2022, 22 (04): : 772 - 810
  • [24] Machine Learning in Python']Python with No Strings Attached
    Baudart, Guillaume
    Hirzel, Martin
    Kate, Kiran
    Mandel, Louis
    Shinnar, Avraham
    [J]. PROCEEDINGS OF THE 3RD ACM SIGPLAN INTERNATIONAL WORKSHOP ON MACHINE LEARNING AND PROGRAMMING LANGUAGES (MAPL '19), 2019, : 1 - 9
  • [25] mvlearn: Multiview Machine Learning in Python']Python
    Perry, Ronan
    Mischler, Gavin
    Guo, Richard
    Lee, Theodore
    Chang, Alexander
    Koul, Arman
    Franz, Cameron
    Richard, Hugo
    Carmichael, Iain
    Ablin, Pierre
    Gramfort, Alexandre
    Vogelstein, Joshua T.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [26] Seglearn: A Python']Python Package for Learning Sequences and Time Series
    Burns, David M.
    Whyne, Cari M.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 19
  • [27] MagPySV: A Python']Python Package for Processing and Denoising Geomagnetic Observatory Data
    Cox, G. A.
    Brown, W. J.
    Billingham, L.
    Holme, R.
    [J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2018, 19 (09) : 3347 - 3363
  • [28] PE Parser: A Python']Python package for Portable Executable files processing
    Gibert, Daniel
    [J]. SOFTWARE IMPACTS, 2022, 13
  • [29] Machine Learning Made Easy: A Review of Scikit-learn Package in Python']Python Programming Language
    Hao, Jiangang
    Ho, Tin Kam
    [J]. JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2019, 44 (03) : 348 - 361
  • [30] Teaching Image Processing in Engineering Using Python']Python
    Jimenez Lopez, Andres Fernando
    Prieto Pelayo, Marla Carolina
    Ramirez Forero, Angela
    [J]. IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE-IEEE RITA, 2016, 11 (03): : 129 - 136