mvlearn: Multiview Machine Learning in Python']Python

被引:0
|
作者
Perry, Ronan [1 ]
Mischler, Gavin [10 ]
Guo, Richard [2 ]
Lee, Theodore [1 ]
Chang, Alexander [1 ]
Koul, Arman [1 ]
Franz, Cameron [2 ]
Richard, Hugo [5 ]
Carmichael, Iain [6 ]
Ablin, Pierre [7 ,8 ]
Gramfort, Alexandre [5 ]
Vogelstein, Joshua T. [1 ,3 ,4 ,9 ]
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Kavli Neurosci Discovery Inst, Inst Computat Med, Baltimore, MD 21218 USA
[5] Univ Paris Saclay, INRIA, Palaiseau, France
[6] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[7] PSL Univ, Ecole Normale Super, CNRS, Paris, France
[8] PSL Univ, Ecole Normale Super, DMA, Paris, France
[9] Progress Learning, Baltimore, MD 21218 USA
[10] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
关键词
multiview; machine learning; !text type='python']python[!/text; multi-modal; multi-table; multi-block; CANONICAL CORRELATION-ANALYSIS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As data are generated more and more from multiple disparate sources, multiview data sets, where each sample has features in distinct views, have grown in recent years. However, no comprehensive package exists that enables non-specialists to use these methods easily. mvlearn is a Python library which implements the leading multiview machine learning methods. Its simple API closely follows that of scikit-learn for increased ease-of-use. The package can be installed from Python Package Index (PyPI) and the conda package manager and is released under the MIT open-source license. The documentation, detailed examples, and all releases are available at https://mvlearn.github.io/.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] mvlearn: Multiview machine learning in python
    Perry, Ronan
    Mischler, Gavin
    Guo, Richard
    Lee, Theodore
    Chang, Alexander
    Koul, Arman
    Franz, Cameron
    Richard, Hugo
    Carmichael, Iain
    Ablin, Pierre
    Gramfort, Alexandre
    Vogelstein, Joshua T.
    Journal of Machine Learning Research, 2021, 22
  • [2] An Introduction to Machine Learning in Python']Python
    Clevert, D. -A.
    TOXICOLOGY LETTERS, 2023, 384 : S5 - S5
  • [3] Machine Learning in Python']Python Fundamentals
    Hernandez Aguilar, Jose Alberto
    Hernandez Perez, Yasmin
    2023 12TH INTERNATIONAL CONFERENCE ON SOFTWARE PROCESS IMPROVEMENT, CIMPS 2023, 2023, : 281 - 284
  • [4] Python']Python Machine Learning Case Studies
    Puerta Monsalve, Harry L.
    CUADERNO ACTIVA, 2018, (10):
  • [5] Machine learning using Stata/Python']Python
    Cerulli, Giovanni
    STATA JOURNAL, 2022, 22 (04): : 772 - 810
  • [6] Machine Learning in Python']Python with No Strings Attached
    Baudart, Guillaume
    Hirzel, Martin
    Kate, Kiran
    Mandel, Louis
    Shinnar, Avraham
    PROCEEDINGS OF THE 3RD ACM SIGPLAN INTERNATIONAL WORKSHOP ON MACHINE LEARNING AND PROGRAMMING LANGUAGES (MAPL '19), 2019, : 1 - 9
  • [7] Machine Learning Estimators: Implementation and Comparison in Python']Python
    Merle, Fabian
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2025, 25 (01) : 153 - 171
  • [8] Scikit-learn: Machine Learning in Python']Python
    Pedregosa, Fabian
    Varoquaux, Gaeel
    Gramfort, Alexandre
    Michel, Vincent
    Thirion, Bertrand
    Grisel, Olivier
    Blondel, Mathieu
    Prettenhofer, Peter
    Weiss, Ron
    Dubourg, Vincent
    Vanderplas, Jake
    Passos, Alexandre
    Cournapeau, David
    Brucher, Matthieu
    Perrot, Matthieu
    Duchesnay, Edouard
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 2825 - 2830
  • [9] SPAM: Simplifying Python']Python for Approaching Machine Learning
    Rosiene, Joel A.
    Rosiene, Carolyn Pe
    2020 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE 2020), 2020,
  • [10] River: machine learning for streaming data in Python']Python
    Montiel, Jacob
    Halford, Max
    Mastelini, Saulo Martiello
    Bolmier, Geoffrey
    Sourty, Raphael
    Vaysse, Robin
    Zouitine, Adil
    Gomes, Heitor Murilo
    Read, Jesse
    Abdessalem, Talel
    Bifet, Albert
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22