mvlearn: Multiview Machine Learning in Python']Python

被引:0
|
作者
Perry, Ronan [1 ]
Mischler, Gavin [10 ]
Guo, Richard [2 ]
Lee, Theodore [1 ]
Chang, Alexander [1 ]
Koul, Arman [1 ]
Franz, Cameron [2 ]
Richard, Hugo [5 ]
Carmichael, Iain [6 ]
Ablin, Pierre [7 ,8 ]
Gramfort, Alexandre [5 ]
Vogelstein, Joshua T. [1 ,3 ,4 ,9 ]
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Kavli Neurosci Discovery Inst, Inst Computat Med, Baltimore, MD 21218 USA
[5] Univ Paris Saclay, INRIA, Palaiseau, France
[6] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[7] PSL Univ, Ecole Normale Super, CNRS, Paris, France
[8] PSL Univ, Ecole Normale Super, DMA, Paris, France
[9] Progress Learning, Baltimore, MD 21218 USA
[10] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
关键词
multiview; machine learning; !text type='python']python[!/text; multi-modal; multi-table; multi-block; CANONICAL CORRELATION-ANALYSIS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As data are generated more and more from multiple disparate sources, multiview data sets, where each sample has features in distinct views, have grown in recent years. However, no comprehensive package exists that enables non-specialists to use these methods easily. mvlearn is a Python library which implements the leading multiview machine learning methods. Its simple API closely follows that of scikit-learn for increased ease-of-use. The package can be installed from Python Package Index (PyPI) and the conda package manager and is released under the MIT open-source license. The documentation, detailed examples, and all releases are available at https://mvlearn.github.io/.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] secml: Secure and explainable machine learning in Python']Python
    Pintor, Maura
    Demetrio, Luca
    Sotgiu, Angelo
    Melis, Marco
    Demontis, Ambra
    Biggio, Battista
    SOFTWAREX, 2022, 18
  • [12] Machine learning, deep learning and Python']Python language in field of geology
    Zhou YongZhang
    Wang Jun
    Zuo RenGuang
    Xiao Fan
    Shen WenJie
    Wang ShuGong
    ACTA PETROLOGICA SINICA, 2018, 34 (11) : 3173 - 3178
  • [13] Sentiment Analysis using Machine Learning Techniques on Python']Python
    Rathee, Nisha
    Joshi, Nikita
    Kaur, Jaspreet
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 779 - 785
  • [14] mOWL: Python']Python library for machine learning with biomedical ontologies
    Zhapa-Camacho, Fernando
    Kulmanov, Maxat
    Hoehndorf, Robert
    BIOINFORMATICS, 2023, 39 (01)
  • [15] The Raise of Machine Learning Hyperparameter Constraints in Python']Python Code
    Rak-amnouykit, Ingkarat
    Milanova, Ana
    Baudart, Guillaume
    Hirzel, Martin
    Dolby, Julian
    PROCEEDINGS OF THE 31ST ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS, ISSTA 2022, 2022, : 580 - 592
  • [16] Churn Analysis with Machine Learning Classification Algorithms in Python']Python
    Ozdemir, Onur
    Batar, Mustafa
    Isik, Ali Hakan
    ARTIFICIAL INTELLIGENCE AND APPLIED MATHEMATICS IN ENGINEERING PROBLEMS, 2020, 43 : 844 - 852
  • [17] Big Data and Machine Learning - Cloud and Python']Python Workshop
    Nguyen, Thuan L.
    AMCIS 2018 PROCEEDINGS, 2018,
  • [18] Geomstats: A Python']Python Package for Riemannian Geometry in Machine Learning
    Miolane, Nina
    Guigui, Nicolas
    Le Brigant, Alice
    Mathe, Johan
    Hou, Benjamin
    Thanwerdas, Yann
    Heyder, Stefan
    Peltre, Olivier
    Koep, Niklas
    Zaatiti, Hadi
    Hajri, Hatem
    Cabanes, Yann
    Gerald, Thomas
    Chauchat, Paul
    Shewmake, Christian
    Brooks, Daniel
    Kainz, Bernhard
    Donnat, Claire
    Holmes, Susan
    Pennec, Xavier
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [19] Transactional Python']Python for Durable Machine Learning: Vision, Challenges, and Feasibility
    Chockchowwat, Supawit
    Li, Zhaoheng
    Park, Yongjoo
    PROCEEDINGS OF THE SEVENTH WORKSHOP ON DATA MANAGEMENT FOR END-TO-END MACHINE LEARNING, DEEM, 2023,
  • [20] A Python']Python Framework for Exhaustive Machine Learning Algorithms and Features Evaluations
    Dubosson, Fabien
    Bromuri, Stefano
    Schumacher, Michael
    IEEE 30TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS IEEE AINA 2016, 2016, : 987 - 993