The Raise of Machine Learning Hyperparameter Constraints in Python']Python Code

被引:1
|
作者
Rak-amnouykit, Ingkarat [1 ]
Milanova, Ana [1 ]
Baudart, Guillaume [2 ]
Hirzel, Martin [3 ]
Dolby, Julian [3 ]
机构
[1] Rensselaer Polytech Inst, Troy, NY 12181 USA
[2] PSL Univ, Ecole Normale Super, CNRS, INRIA,DI ENS, Paris, France
[3] IBM Res, Armonk, NY USA
关键词
!text type='Python']Python[!/text; machine learning libraries; interprocedural analysis;
D O I
10.1145/3533767.3534400
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Machine-learning operators often have correctness constraints that cut across multiple hyperparameters and/or data. Violating these constraints causes the operator to raise runtime exceptions, but those are usually documented only informally or not at all. This paper presents the first interprocedural weakest-precondition analysis for Python to extract hyperparameter constraints. The analysis is mostly static, but to make it tractable for typical Python idioms in machine-learning libraries, it selectively switches to the concrete domain for some cases. This paper demonstrates the analysis by extracting hyperparameter constraints for 181 operators from a total of 8 ML libraries, where it achieved high precision and recall and found real bugs. Our technique advances static analysis for Python and is a step towards safer and more robust machine learning.
引用
收藏
页码:580 / 592
页数:13
相关论文
共 50 条
  • [1] Machine Learning Techniques For Python']Python Source Code Vulnerability Detection
    Farasat, Talaya
    Posegga, Joachim
    [J]. PROCEEDINGS OF THE FOURTEENTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY, CODASPY 2024, 2024, : 151 - 153
  • [2] Python']Python code smells detection using conventional machine learning models
    Sandouka, Rana
    Aljamaan, Hamoud
    [J]. PEERJ COMPUTER SCIENCE, 2023, 9
  • [3] An Introduction to Machine Learning in Python']Python
    Clevert, D. -A.
    [J]. TOXICOLOGY LETTERS, 2023, 384 : S5 - S5
  • [4] Machine Learning in Python']Python Fundamentals
    Hernandez Aguilar, Jose Alberto
    Hernandez Perez, Yasmin
    [J]. 2023 12TH INTERNATIONAL CONFERENCE ON SOFTWARE PROCESS IMPROVEMENT, CIMPS 2023, 2023, : 281 - 284
  • [5] PyMLDA: A Python']Python open-source code for Machine Learning Damage Assessment
    Coelho, Jefferson da Silva
    Machado, Marcela Rodrigues
    de Sousa, Amanda Aryda S. R.
    [J]. SOFTWARE IMPACTS, 2024, 19
  • [6] Principled and practical static analysis for Python']Python: Weakest precondition inference of hyperparameter constraints
    Rak-amnouykit, Ingkarat
    Milanova, Ana
    Baudart, Guillaume
    Hirzel, Martin
    Dolby, Julian
    [J]. SOFTWARE-PRACTICE & EXPERIENCE, 2024, 54 (03): : 363 - 393
  • [7] Python']Python Machine Learning Case Studies
    Puerta Monsalve, Harry L.
    [J]. CUADERNO ACTIVA, 2018, (10):
  • [8] Machine learning using Stata/Python']Python
    Cerulli, Giovanni
    [J]. STATA JOURNAL, 2022, 22 (04): : 772 - 810
  • [9] Machine Learning in Python']Python with No Strings Attached
    Baudart, Guillaume
    Hirzel, Martin
    Kate, Kiran
    Mandel, Louis
    Shinnar, Avraham
    [J]. PROCEEDINGS OF THE 3RD ACM SIGPLAN INTERNATIONAL WORKSHOP ON MACHINE LEARNING AND PROGRAMMING LANGUAGES (MAPL '19), 2019, : 1 - 9
  • [10] mvlearn: Multiview Machine Learning in Python']Python
    Perry, Ronan
    Mischler, Gavin
    Guo, Richard
    Lee, Theodore
    Chang, Alexander
    Koul, Arman
    Franz, Cameron
    Richard, Hugo
    Carmichael, Iain
    Ablin, Pierre
    Gramfort, Alexandre
    Vogelstein, Joshua T.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22