mvlearn: Multiview Machine Learning in Python']Python

被引:0
|
作者
Perry, Ronan [1 ]
Mischler, Gavin [10 ]
Guo, Richard [2 ]
Lee, Theodore [1 ]
Chang, Alexander [1 ]
Koul, Arman [1 ]
Franz, Cameron [2 ]
Richard, Hugo [5 ]
Carmichael, Iain [6 ]
Ablin, Pierre [7 ,8 ]
Gramfort, Alexandre [5 ]
Vogelstein, Joshua T. [1 ,3 ,4 ,9 ]
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Kavli Neurosci Discovery Inst, Inst Computat Med, Baltimore, MD 21218 USA
[5] Univ Paris Saclay, INRIA, Palaiseau, France
[6] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[7] PSL Univ, Ecole Normale Super, CNRS, Paris, France
[8] PSL Univ, Ecole Normale Super, DMA, Paris, France
[9] Progress Learning, Baltimore, MD 21218 USA
[10] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
关键词
multiview; machine learning; !text type='python']python[!/text; multi-modal; multi-table; multi-block; CANONICAL CORRELATION-ANALYSIS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As data are generated more and more from multiple disparate sources, multiview data sets, where each sample has features in distinct views, have grown in recent years. However, no comprehensive package exists that enables non-specialists to use these methods easily. mvlearn is a Python library which implements the leading multiview machine learning methods. Its simple API closely follows that of scikit-learn for increased ease-of-use. The package can be installed from Python Package Index (PyPI) and the conda package manager and is released under the MIT open-source license. The documentation, detailed examples, and all releases are available at https://mvlearn.github.io/.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] PHOTONAI-A Python']Python API for rapid machine learning model development
    Leenings, Ramona
    Winter, Nils Ralf
    Plagwitz, Lucas
    Holstein, Vincent
    Ernsting, Jan
    Sarink, Kelvin
    Fisch, Lukas
    Steenweg, Jakob
    Kleine-Vennekate, Leon
    Gebker, Julian
    Emden, Daniel
    Grotegerd, Dominik
    Opel, Nils
    Risse, Benjamin
    Jiang, Xiaoyi
    Dannlowski, Udo
    Hahn, Tim
    PLOS ONE, 2021, 16 (07):
  • [42] Python']Python code smells detection using conventional machine learning models
    Sandouka, Rana
    Aljamaan, Hamoud
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [43] Optimized Extreme Learning Machine for Big Data Applications using Python']Python
    Dogaru, Radu
    Dogaru, Ioana
    2018 12TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS (COMM), 2018, : 189 - 192
  • [44] MLCatchUp: Automated Update of Deprecated Machine-Learning APIs in Python']Python
    Haryono, Stefanus A.
    Thung, Ferdian
    Lo, David
    Lawall, Julia
    Jiang, Lingxiao
    2021 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME 2021), 2021, : 584 - 588
  • [45] Machine Learning Human Behavior Detection Mechanism Based on Python']Python Architecture
    Zhu, Jinnuo
    Goyal, S. B.
    Verma, Chaman
    Raboaca, Maria Simona
    Mihaltan, Traian Candin
    MATHEMATICS, 2022, 10 (17)
  • [46] Machine learning for Earth sciences: using Python']Python to solve geological problems
    Suhyani, Neli Oktavia
    Petrelli, Maurizio
    INTERNATIONAL GEOLOGY REVIEW, 2025,
  • [47] BESOS: a Python']Python library that links EnergyPlus with optimization and machine learning tools
    Christiaanse, Theodor Victor
    Westermann, Paul
    Beckett, Will
    Faure, Gaelle
    Evins, Ralph
    PROCEEDINGS OF BUILDING SIMULATION 2021: 17TH CONFERENCE OF IBPSA, 2022, 17 : 1951 - 1958
  • [48] MLPro - An integrative middleware framework for standardized machine learning tasks in Python']Python
    Arend, Detlef
    Diprasetya, Mochammad Rizky
    Yuwono, Steve
    Schwung, Andreas
    SOFTWARE IMPACTS, 2022, 14
  • [49] ProPythia: A Python']Python package for protein classification based on machine and deep learning
    Sequeira, Ana Marta
    Lousa, Diana
    Rocha, Miguel
    NEUROCOMPUTING, 2022, 484 : 172 - 182
  • [50] Univariate machine learning models applied in photovoltaic power prediction using Python']Python
    Bahanni, Caouthar
    Mabrouki, Mustapha
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (01) : 589 - 607