Machine Learning Estimators: Implementation and Comparison in Python']Python

被引:0
|
作者
Merle, Fabian [1 ]
机构
[1] Univ Tubingen, Math Inst, Morgenstelle 10, D-72076 Tubingen, Germany
关键词
Machine Learning Estimators; Implementational Details; !text type='Python']Python[!/text] Codes; Handwritten Digit Recognition;
D O I
10.1515/cmam-2023-0198
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare different machine learning estimators and present details about their implementation in Python. The computational studies are conducted for classification as well as regression problems. Moreover, as one of the founding problems of machine learning, we present the specific classification task of handwritten digit recognition. In this connection, we discuss the mathematical formulation and of course the implementation details of this problem. All corresponding Python code is fully provided on request and can be downloaded from the author's GitHub page https://github.com/Fab1Fatal.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] An Introduction to Machine Learning in Python']Python
    Clevert, D. -A.
    [J]. TOXICOLOGY LETTERS, 2023, 384 : S5 - S5
  • [2] Machine Learning in Python']Python Fundamentals
    Hernandez Aguilar, Jose Alberto
    Hernandez Perez, Yasmin
    [J]. 2023 12TH INTERNATIONAL CONFERENCE ON SOFTWARE PROCESS IMPROVEMENT, CIMPS 2023, 2023, : 281 - 284
  • [3] DoubleML - An Object-Oriented Implementation of Double Machine Learning in Python']Python
    Bach, Philipp
    Chernozhukov, Victor
    Kurz, Malte S.
    Spindler, Martin
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23 : 1 - 6
  • [4] Python']Python Machine Learning Case Studies
    Puerta Monsalve, Harry L.
    [J]. CUADERNO ACTIVA, 2018, (10):
  • [5] Machine learning using Stata/Python']Python
    Cerulli, Giovanni
    [J]. STATA JOURNAL, 2022, 22 (04): : 772 - 810
  • [6] Machine Learning in Python']Python with No Strings Attached
    Baudart, Guillaume
    Hirzel, Martin
    Kate, Kiran
    Mandel, Louis
    Shinnar, Avraham
    [J]. PROCEEDINGS OF THE 3RD ACM SIGPLAN INTERNATIONAL WORKSHOP ON MACHINE LEARNING AND PROGRAMMING LANGUAGES (MAPL '19), 2019, : 1 - 9
  • [7] mvlearn: Multiview Machine Learning in Python']Python
    Perry, Ronan
    Mischler, Gavin
    Guo, Richard
    Lee, Theodore
    Chang, Alexander
    Koul, Arman
    Franz, Cameron
    Richard, Hugo
    Carmichael, Iain
    Ablin, Pierre
    Gramfort, Alexandre
    Vogelstein, Joshua T.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [8] Scikit-learn: Machine Learning in Python']Python
    Pedregosa, Fabian
    Varoquaux, Gaeel
    Gramfort, Alexandre
    Michel, Vincent
    Thirion, Bertrand
    Grisel, Olivier
    Blondel, Mathieu
    Prettenhofer, Peter
    Weiss, Ron
    Dubourg, Vincent
    Vanderplas, Jake
    Passos, Alexandre
    Cournapeau, David
    Brucher, Matthieu
    Perrot, Matthieu
    Duchesnay, Edouard
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 2825 - 2830
  • [9] SPAM: Simplifying Python']Python for Approaching Machine Learning
    Rosiene, Joel A.
    Rosiene, Carolyn Pe
    [J]. 2020 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE 2020), 2020,
  • [10] River: machine learning for streaming data in Python']Python
    Montiel, Jacob
    Halford, Max
    Mastelini, Saulo Martiello
    Bolmier, Geoffrey
    Sourty, Raphael
    Vaysse, Robin
    Zouitine, Adil
    Gomes, Heitor Murilo
    Read, Jesse
    Abdessalem, Talel
    Bifet, Albert
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22