Machine Learning Estimators: Implementation and Comparison in Python']Python

被引:0
|
作者
Merle, Fabian [1 ]
机构
[1] Univ Tubingen, Math Inst, Morgenstelle 10, D-72076 Tubingen, Germany
关键词
Machine Learning Estimators; Implementational Details; !text type='Python']Python[!/text] Codes; Handwritten Digit Recognition;
D O I
10.1515/cmam-2023-0198
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare different machine learning estimators and present details about their implementation in Python. The computational studies are conducted for classification as well as regression problems. Moreover, as one of the founding problems of machine learning, we present the specific classification task of handwritten digit recognition. In this connection, we discuss the mathematical formulation and of course the implementation details of this problem. All corresponding Python code is fully provided on request and can be downloaded from the author's GitHub page https://github.com/Fab1Fatal.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] PHOTONAI-A Python']Python API for rapid machine learning model development
    Leenings, Ramona
    Winter, Nils Ralf
    Plagwitz, Lucas
    Holstein, Vincent
    Ernsting, Jan
    Sarink, Kelvin
    Fisch, Lukas
    Steenweg, Jakob
    Kleine-Vennekate, Leon
    Gebker, Julian
    Emden, Daniel
    Grotegerd, Dominik
    Opel, Nils
    Risse, Benjamin
    Jiang, Xiaoyi
    Dannlowski, Udo
    Hahn, Tim
    [J]. PLOS ONE, 2021, 16 (07):
  • [42] SnapperML: A python']python-based framework to improve machine learning operations
    Molner, Antonio
    Carrillo-Perez, Francisco
    Guillen, Alberto
    [J]. SOFTWAREX, 2024, 26
  • [43] Machine Learning Human Behavior Detection Mechanism Based on Python']Python Architecture
    Zhu, Jinnuo
    Goyal, S. B.
    Verma, Chaman
    Raboaca, Maria Simona
    Mihaltan, Traian Candin
    [J]. MATHEMATICS, 2022, 10 (17)
  • [44] Python']Python code smells detection using conventional machine learning models
    Sandouka, Rana
    Aljamaan, Hamoud
    [J]. PEERJ COMPUTER SCIENCE, 2023, 9
  • [45] Optimized Extreme Learning Machine for Big Data Applications using Python']Python
    Dogaru, Radu
    Dogaru, Ioana
    [J]. 2018 12TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS (COMM), 2018, : 189 - 192
  • [46] MLCatchUp: Automated Update of Deprecated Machine-Learning APIs in Python']Python
    Haryono, Stefanus A.
    Thung, Ferdian
    Lo, David
    Lawall, Julia
    Jiang, Lingxiao
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME 2021), 2021, : 584 - 588
  • [47] MLPro - An integrative middleware framework for standardized machine learning tasks in Python']Python
    Arend, Detlef
    Diprasetya, Mochammad Rizky
    Yuwono, Steve
    Schwung, Andreas
    [J]. SOFTWARE IMPACTS, 2022, 14
  • [48] ProPythia: A Python']Python package for protein classification based on machine and deep learning
    Sequeira, Ana Marta
    Lousa, Diana
    Rocha, Miguel
    [J]. NEUROCOMPUTING, 2022, 484 : 172 - 182
  • [49] Implementation of a Python']Python Program to Simulate Sampling
    Dickson-Karn, Nicole M.
    Orosz, Steven
    [J]. JOURNAL OF CHEMICAL EDUCATION, 2021, 98 (10) : 3251 - 3257
  • [50] MDSplus objects-Python']Python implementation
    Fredian, T.
    Stillerman, J.
    Manduchi, G.
    [J]. FUSION ENGINEERING AND DESIGN, 2010, 85 (3-4) : 568 - 570