Python']Python parallel processing for hyperspectral image simulation: based on distance functions

被引:0
|
作者
Peddinti, Veerendra Satya Sylesh [1 ]
Mandla, Venkata Ravibabu [2 ]
Mesapam, Shashi [1 ]
Kancherla, Suresh [3 ]
机构
[1] Natl Inst Technol NIT Warangal, Dept Civil Engn, Warangal 506004, Telangana, India
[2] Govt India, Minist Rural Dev, Natl Inst Rural Dev & Panchayat Raj NIRDPR, Ctr Geoinformat Applicat Rural Dev CGARD, Hyderabad 500030, Telangana, India
[3] Indian Council Agr Res IIOPR, Pedavegi 534450, AP, India
关键词
AVIRIS-NG; SAM; Chebyshev; Distance functions; !text type='Python']Python[!/text; Normalized cross-correlation; VEGETATION INDEXES;
D O I
10.1007/s12145-021-00690-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The hyperspectral image consists of a high number of bands with low bandwidth which gives the advantage in the identification and detection of the features in the level of mineral and chemical composition. But the availability of hyperspectral data is very less and is highly expensive when compared to multispectral data. Simulation of hyperspectral data with the existing hyperspectral and multispectral data can be used as an alternative if data availability is less and is cost-effective. A new method is proposed for hyperspectral image simulation with Chebyshev and Spectral Angle Mapper (SAM) distance functions using python programming and its libraries. The process is selecting similar spectra of each pixel. Using normal processing, the data simulation is very time-consuming. By increasing the cores employed with parallel processing in python programming, the hyperspectral data simulation time is decreased exponentially from 19 to 1 h 21 min. The study clearly explains the logic and open source python code for the simulation of hyperspectral data. Data can be simulated with python code by just giving the paths of test Sentinel-2 and reference Sentinel-2, AVIRIS data. The simulated image gave better normalized cross-correlation values when compared with the original Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) data.
引用
收藏
页码:2221 / 2229
页数:9
相关论文
共 50 条
  • [1] Python parallel processing for hyperspectral image simulation: based on distance functions
    Veerendra Satya Sylesh Peddinti
    Venkata Ravibabu Mandla
    Shashi Mesapam
    Suresh Kancherla
    [J]. Earth Science Informatics, 2021, 14 : 2221 - 2229
  • [2] Image Processing and Machine Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python']Python Package
    Rasti, Behnood
    Zouaoui, Alexandre
    Mairal, Julien
    Chanussot, Jocelyn
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [3] Image Processing in Python']Python with Montage
    Good, John
    Berriman, G. Bruce
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXVIII, 2019, 523 : 685 - 688
  • [4] scikit-image: image processing in Python']Python
    van der Walt, Stefan
    Schonberger, Johannes L.
    Nunez-Iglesias, Juan
    Boulogne, Francois
    Warner, Joshua D.
    Yager, Neil
    Gouillart, Emmanuelle
    Yu, Tony
    [J]. PEERJ, 2014, 2
  • [5] Toolbox of image processing for numerical python']python
    Silva, AG
    Lotufo, RD
    Machado, RC
    [J]. XIV BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2001, : 402 - 402
  • [6] Image processing and acquisition using Python']Python
    Myridis, Nikolaos E.
    [J]. CONTEMPORARY PHYSICS, 2015, 56 (02) : 243 - 243
  • [7] Batch Processing of Remote Sensing Image Mosaic based on Python']Python
    Xiu, Hongling
    Yang, Fengyun
    [J]. INTERNATIONAL JOURNAL OF ONLINE ENGINEERING, 2018, 14 (09) : 208 - 216
  • [8] Parallel Processing of Genetic Algorithms in Python']Python Language
    Skorpil, V
    Oujersky, V
    Cika, P.
    Tuleja, M.
    [J]. 2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 3727 - 3731
  • [9] Parallel simulations of manufacturing processing using simpy, a python']python-based discrete event simulation tool
    Castillo, Victor
    [J]. Proceedings of the 2006 Winter Simulation Conference, Vols 1-5, 2006, : 2294 - 2294
  • [10] Teaching Image Processing in Engineering Using Python']Python
    Jimenez Lopez, Andres Fernando
    Prieto Pelayo, Marla Carolina
    Ramirez Forero, Angela
    [J]. IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE-IEEE RITA, 2016, 11 (03): : 129 - 136