PyGenePlexus: a Python']Python package for gene discovery using network-based machine learning

被引:2
|
作者
Mancuso, Christopher A. [1 ,2 ]
Liu, Renming [1 ]
Krishnan, Arjun [1 ,3 ]
机构
[1] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[2] Univ Colorado Denver Anschutz Med Campus, Colorado Sch Publ Hlth, Dept Biostat & Informat, Aurora, CO 80045 USA
[3] Univ Colorado Denver Anschutz Med Campus, Dept Biomed Informat, Aurora, CO 80045 USA
基金
美国国家卫生研究院;
关键词
BARDET-BIEDL-SYNDROME; DISEASE; PREDICTION; PRIORITIZATION; TOOL;
D O I
10.1093/bioinformatics/btad064
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
PyGenePlexus is a Python package that enables a user to gain insight into any gene set of interest through a molecular interaction network informed supervised machine learning model. PyGenePlexus provides predictions of how associated every gene in the network is to the input gene set, offers interpretability by comparing the model trained on the input gene set to models trained on thousands of known gene sets, and returns the network connectivity of the top predicted genes. Availability and implementation: https://pypi.org/project/geneplexus/ and https://github.com/krishnanlab/PyGenePlexus. Contact: arjun.krishnan@cuanschutz.edu Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Machine Learning Estimators: Implementation and Comparison in Python']Python
    Merle, Fabian
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024,
  • [32] Scikit-learn: Machine Learning in Python']Python
    Pedregosa, Fabian
    Varoquaux, Gaeel
    Gramfort, Alexandre
    Michel, Vincent
    Thirion, Bertrand
    Grisel, Olivier
    Blondel, Mathieu
    Prettenhofer, Peter
    Weiss, Ron
    Dubourg, Vincent
    Vanderplas, Jake
    Passos, Alexandre
    Cournapeau, David
    Brucher, Matthieu
    Perrot, Matthieu
    Duchesnay, Edouard
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 2825 - 2830
  • [33] SnapperML: A python']python-based framework to improve machine learning operations
    Molner, Antonio
    Carrillo-Perez, Francisco
    Guillen, Alberto
    [J]. SOFTWAREX, 2024, 26
  • [34] Machine Learning Human Behavior Detection Mechanism Based on Python']Python Architecture
    Zhu, Jinnuo
    Goyal, S. B.
    Verma, Chaman
    Raboaca, Maria Simona
    Mihaltan, Traian Candin
    [J]. MATHEMATICS, 2022, 10 (17)
  • [35] SAIPy: A Python']Python package for single-station earthquake monitoring using deep learning
    Li, Wei
    Chakraborty, Megha
    Cartaya, Claudia Quinteros
    Koehler, Jonas
    Faber, Johannes
    Meier, Men-Andrin
    Ruempker, Georg
    Srivastava, Nishtha
    [J]. COMPUTERS & GEOSCIENCES, 2024, 192
  • [36] MicrographCleaner: A python']python package for cryo-EM micrograph cleaning using deep learning
    Sanchez-Garcia, Ruben
    Segura, Joan
    Maluenda, David
    Sorzano, C. O. S.
    Carazo, J. M.
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2020, 210 (03)
  • [37] SPAM: Simplifying Python']Python for Approaching Machine Learning
    Rosiene, Joel A.
    Rosiene, Carolyn Pe
    [J]. 2020 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE 2020), 2020,
  • [38] River: machine learning for streaming data in Python']Python
    Montiel, Jacob
    Halford, Max
    Mastelini, Saulo Martiello
    Bolmier, Geoffrey
    Sourty, Raphael
    Vaysse, Robin
    Zouitine, Adil
    Gomes, Heitor Murilo
    Read, Jesse
    Abdessalem, Talel
    Bifet, Albert
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [39] secml: Secure and explainable machine learning in Python']Python
    Pintor, Maura
    Demetrio, Luca
    Sotgiu, Angelo
    Melis, Marco
    Demontis, Ambra
    Biggio, Battista
    [J]. SOFTWAREX, 2022, 18
  • [40] CosinorPy: a python']python package for cosinor-based rhythmometry
    Moskon, Miha
    [J]. BMC BIOINFORMATICS, 2020, 21 (01)