PyGenePlexus: a Python']Python package for gene discovery using network-based machine learning

被引:2
|
作者
Mancuso, Christopher A. [1 ,2 ]
Liu, Renming [1 ]
Krishnan, Arjun [1 ,3 ]
机构
[1] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[2] Univ Colorado Denver Anschutz Med Campus, Colorado Sch Publ Hlth, Dept Biostat & Informat, Aurora, CO 80045 USA
[3] Univ Colorado Denver Anschutz Med Campus, Dept Biomed Informat, Aurora, CO 80045 USA
基金
美国国家卫生研究院;
关键词
BARDET-BIEDL-SYNDROME; DISEASE; PREDICTION; PRIORITIZATION; TOOL;
D O I
10.1093/bioinformatics/btad064
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
PyGenePlexus is a Python package that enables a user to gain insight into any gene set of interest through a molecular interaction network informed supervised machine learning model. PyGenePlexus provides predictions of how associated every gene in the network is to the input gene set, offers interpretability by comparing the model trained on the input gene set to models trained on thousands of known gene sets, and returns the network connectivity of the top predicted genes. Availability and implementation: https://pypi.org/project/geneplexus/ and https://github.com/krishnanlab/PyGenePlexus. Contact: arjun.krishnan@cuanschutz.edu Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] A TUTORIAL ON OBJECT RECOGNITION BY MACHINE LEARNING TECHNIQUES USING PYTHON']PYTHON
    Ruiz-Sarmiento, J. R.
    Monroy, J.
    Moreno, F. A.
    Gonzalez-Jimenez, J.
    [J]. 13TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE (INTED2019), 2019, : 3321 - 3330
  • [22] PyPathway: Python']Python Package for Biological Network Analysis and Visualization
    Xu, Yang
    Luo, Xiao-Chun
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2018, 25 (05) : 499 - 504
  • [23] Machine Learning in Python']Python with No Strings Attached
    Baudart, Guillaume
    Hirzel, Martin
    Kate, Kiran
    Mandel, Louis
    Shinnar, Avraham
    [J]. PROCEEDINGS OF THE 3RD ACM SIGPLAN INTERNATIONAL WORKSHOP ON MACHINE LEARNING AND PROGRAMMING LANGUAGES (MAPL '19), 2019, : 1 - 9
  • [24] mvlearn: Multiview Machine Learning in Python']Python
    Perry, Ronan
    Mischler, Gavin
    Guo, Richard
    Lee, Theodore
    Chang, Alexander
    Koul, Arman
    Franz, Cameron
    Richard, Hugo
    Carmichael, Iain
    Ablin, Pierre
    Gramfort, Alexandre
    Vogelstein, Joshua T.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [25] EXERCISE OF MACHINE LEARNING USING SOME PYTHON']PYTHON TOOLS AND TECHNIQUES
    Geldiev, Ertan Mustafa
    Nenkov, Nayden Valkov
    Petrova, Mariana Mateeva
    [J]. CBU INTERNATIONAL CONFERENCE PROCEEDINGS 2018: INNOVATIONS IN SCIENCE AND EDUCATION, 2018, 6 : 1062 - 1070
  • [26] Seglearn: A Python']Python Package for Learning Sequences and Time Series
    Burns, David M.
    Whyne, Cari M.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 19
  • [27] Machine Learning Made Easy: A Review of Scikit-learn Package in Python']Python Programming Language
    Hao, Jiangang
    Ho, Tin Kam
    [J]. JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2019, 44 (03) : 348 - 361
  • [28] Raising a Model for Fake News Detection Using Machine Learning in Python']Python
    Rolong Agudelo, Gerardo Ernesto
    Salcedo Parra, Octavio Jose
    Baron Velandia, Julio
    [J]. CHALLENGES AND OPPORTUNITIES IN THE DIGITAL ERA, 2018, 11195 : 596 - 604
  • [29] Python']Python code smells detection using conventional machine learning models
    Sandouka, Rana
    Aljamaan, Hamoud
    [J]. PEERJ COMPUTER SCIENCE, 2023, 9
  • [30] Optimized Extreme Learning Machine for Big Data Applications using Python']Python
    Dogaru, Radu
    Dogaru, Ioana
    [J]. 2018 12TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS (COMM), 2018, : 189 - 192