The cityseer Python']Python package for pedestrian-scale network-based urban analysis

被引:2
|
作者
Simons, Gareth [1 ]
机构
[1] UCL, BSEER, UCL Energy Inst, Bldg Stock Lab, Gower St, London WC1E 6BT, England
关键词
Computation; data science; geographical information systems; land-use analysis; morphometrics; network analysis; spatial analysis; urban analytics; urban planning; urban morphology; urbanism; WEIGHTING VALUES; STREET;
D O I
10.1177/23998083221133827
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
cityseer-api is a Python package consisting of computational tools for fine-grained street-network and land-use analysis, helpful in assessing the morphological precursors to vibrant neighbourhoods. It is underpinned by network-based methods developed specifically for urban analysis at the pedestrian scale. cityseer-api computes a variety of node and segment-based network centrality methods, land-use accessibility and mixed-use measures, and statistical aggregations. Accessibilities and aggregations are computed dynamically over the street-network while taking walking distance thresholds and the direction of approach into account, and can optionally incorporate spatial impedances and network decomposition to increase spatial precision. The use of Python facilitates compatibility with popular computational tools for network manipulation (NetworkX), geospatial topology (shapely), geospatial data state management (GeoPandas), and the NumPy stack of scientific packages. The provision of robust network cleaning tools aids the use of OpenStreetMap data for network analysis. Underlying loop-intensive algorithms are implemented in Numba JIT compiled code so that the methods scale efficiently to larger cities and regions. Online documentation is available from cityseer.benchmarkurbanism.com, and the Github repository is available at github.com/benchmark-urbanism/cityseer. Example notebooks are available at cityseer.benchmarkurbanism.com/examples/
引用
收藏
页码:1328 / 1344
页数:17
相关论文
共 50 条
  • [1] PyGenePlexus: a Python']Python package for gene discovery using network-based machine learning
    Mancuso, Christopher A.
    Liu, Renming
    Krishnan, Arjun
    [J]. BIOINFORMATICS, 2023, 39 (02)
  • [2] PyPathway: Python']Python Package for Biological Network Analysis and Visualization
    Xu, Yang
    Luo, Xiao-Chun
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2018, 25 (05) : 499 - 504
  • [3] pyNBS: a Python']Python implementation for network-based stratification of tumor mutations
    Huang, Justin K.
    Jia, Tongqiu
    Carlin, Daniel E.
    Ideker, Trey
    [J]. BIOINFORMATICS, 2018, 34 (16) : 2859 - 2861
  • [4] STARGATE-X: a Python']Python package for statistical analysis on the REACTOME network
    Sinaimeri, Blerina
    Marino, Andrea
    Tronci, Enrico
    Calamoneri, Tiziana
    [J]. JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2024, 20 (03)
  • [5] The Multitaper Spectrum Analysis Package in Python']Python
    Prieto, German A.
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2022, 93 (03) : 1922 - 1929
  • [6] PYCHEM: a multivariate analysis package for python']python
    Jarvis, Roger M.
    Broadhurst, David
    Johnson, Helen
    O'Boyle, Noel M.
    Goodacre, Royston
    [J]. BIOINFORMATICS, 2006, 22 (20) : 2565 - 2566
  • [7] PyPanda: a Python']Python package for gene regulatory network reconstruction
    van IJzendoorn, David G. P.
    Glass, Kimberly
    Quackenbush, John
    Kuijjer, Marieke L.
    [J]. BIOINFORMATICS, 2016, 32 (21) : 3363 - 3365
  • [8] ordpy: A Python']Python package for data analysis with permutation entropy and ordinal network methods
    Pessa, Arthur A. B.
    Ribeiro, Haroldo V.
    [J]. CHAOS, 2021, 31 (06)
  • [9] PyWGCNA: a Python']Python package for weighted gene co-expression network analysis
    Rezaie, Narges
    Reese, Farilie
    Mortazavi, Ali
    [J]. BIOINFORMATICS, 2023, 39 (07)
  • [10] pyjeo: A Python']Python Package for the Analysis of Geospatial Data
    Kempeneers, Pieter
    Pesek, Ondrej
    De Marchi, Davide
    Soille, Pierre
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (10)