Depth-aware inverted refinement network for RGB-D salient object detection

被引:5
|
作者
Gao, Lina [1 ]
Liu, Bing [1 ]
Fu, Ping [1 ]
Xu, Mingzhu [2 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Heilongjiang, Peoples R China
[2] Shangdong Univ, Sch Software, Jinan 250101, Shangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Salient object detection; RGB-D image; Inverted refinement; Cross -level multi -modal features; ATTENTION; IMAGE;
D O I
10.1016/j.neucom.2022.11.031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advances in multi-modal feature fusion boost the development of RGB-D salient object detection (SOD), and many remarkable RGB-D SOD models have been proposed. However, though some existing methods consider fusing the cross-level multi-modal features, they ignore the difference between inter-level having the multi-modal details in convolutional neural networks (CNNs) based RGB-D SOD. Therefore, exploring the correlations and differences of cross-level multi-modal features is a critical issue. In this paper, we present a novel depth-aware inverted refinement network (DAIR) to progressively guide the cross-level multi-modal features through backward propagation, which considerably preserves the different level details with multi-modal cues. Specifically, we innovatively design an end-to-end inverted refinement network to guide cross-level and cross-modal learning for revealing complementary relations of the cross-modal. The inverted refinement network also refines the low-level spatial details by the highlevel global contextual cues. In particular, considering the difference of multi-modal and the effect of depth quality, a depth-aware intensified module (DAIM) is proposed with capturing the paired relationship of the pixel-level and inter-channel for the depth map. It promotes the representative capability of the depth details. Extensive experiments on nine challenging RGB-D SOD datasets demonstrate remarkable performance boosting of our proposed model against the fourteen state-of-the-art (SOTA) RGB-D SOD approaches.
引用
收藏
页码:507 / 522
页数:16
相关论文
共 50 条
  • [21] Adaptive fusion network for RGB-D salient object detection
    Chen, Tianyou
    Xiao, Jin
    Hu, Xiaoguang
    Zhang, Guofeng
    Wang, Shaojie
    [J]. NEUROCOMPUTING, 2023, 522 : 152 - 164
  • [22] Delving into Calibrated Depth for Accurate RGB-D Salient Object Detection
    Li, Jingjing
    Ji, Wei
    Zhang, Miao
    Piao, Yongri
    Lu, Huchuan
    Cheng, Li
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (04) : 855 - 876
  • [23] Delving into Calibrated Depth for Accurate RGB-D Salient Object Detection
    Jingjing Li
    Wei Ji
    Miao Zhang
    Yongri Piao
    Huchuan Lu
    Li Cheng
    [J]. International Journal of Computer Vision, 2023, 131 : 855 - 876
  • [24] Three-Stream Attention-Aware Network for RGB-D Salient Object Detection
    Chen, Hao
    Li, Youfu
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (06) : 2825 - 2835
  • [25] Depth quality-aware selective saliency fusion for RGB-D image salient object detection
    Wang, Xuehao
    Li, Shuai
    Chen, Chenglizhao
    Hao, Aimin
    Qin, Hong
    [J]. NEUROCOMPUTING, 2021, 432 : 44 - 56
  • [26] Depth-Induced Gap-Reducing Network for RGB-D Salient Object Detection: An Interaction, Guidance and Refinement Approach
    Cheng, Xiaolong
    Zheng, Xuan
    Pei, Jialun
    Tang, He
    Lyu, Zehua
    Chen, Chuanbo
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4253 - 4266
  • [27] Guided residual network for RGB-D salient object detection with efficient depth feature learning
    Wang, Jian
    Chen, Shuhan
    Lv, Xiao
    Xu, Xiuqi
    Hu, Xuelong
    [J]. VISUAL COMPUTER, 2022, 38 (05): : 1803 - 1814
  • [28] Depth Enhanced Cross-Modal Cascaded Network for RGB-D Salient Object Detection
    Zhao, Zhengyun
    Huang, Ziqing
    Chai, Xiuli
    Wang, Jun
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (01) : 361 - 384
  • [29] Depth quality-aware selective saliency fusion for RGB-D image salient object detection
    Wang, Xuehao
    Li, Shuai
    Chen, Chenglizhao
    Hao, Aimin
    Qin, Hong
    [J]. Neurocomputing, 2021, 432 : 44 - 56
  • [30] SiaTrans: Siamese transformer network for RGB-D salient object detection with depth image classification
    Jia, XingZhao
    DongYe, ChangLei
    Peng, YanJun
    [J]. IMAGE AND VISION COMPUTING, 2022, 127