Depth-aware inverted refinement network for RGB-D salient object detection

被引:5
|
作者
Gao, Lina [1 ]
Liu, Bing [1 ]
Fu, Ping [1 ]
Xu, Mingzhu [2 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Heilongjiang, Peoples R China
[2] Shangdong Univ, Sch Software, Jinan 250101, Shangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Salient object detection; RGB-D image; Inverted refinement; Cross -level multi -modal features; ATTENTION; IMAGE;
D O I
10.1016/j.neucom.2022.11.031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advances in multi-modal feature fusion boost the development of RGB-D salient object detection (SOD), and many remarkable RGB-D SOD models have been proposed. However, though some existing methods consider fusing the cross-level multi-modal features, they ignore the difference between inter-level having the multi-modal details in convolutional neural networks (CNNs) based RGB-D SOD. Therefore, exploring the correlations and differences of cross-level multi-modal features is a critical issue. In this paper, we present a novel depth-aware inverted refinement network (DAIR) to progressively guide the cross-level multi-modal features through backward propagation, which considerably preserves the different level details with multi-modal cues. Specifically, we innovatively design an end-to-end inverted refinement network to guide cross-level and cross-modal learning for revealing complementary relations of the cross-modal. The inverted refinement network also refines the low-level spatial details by the highlevel global contextual cues. In particular, considering the difference of multi-modal and the effect of depth quality, a depth-aware intensified module (DAIM) is proposed with capturing the paired relationship of the pixel-level and inter-channel for the depth map. It promotes the representative capability of the depth details. Extensive experiments on nine challenging RGB-D SOD datasets demonstrate remarkable performance boosting of our proposed model against the fourteen state-of-the-art (SOTA) RGB-D SOD approaches.
引用
收藏
页码:507 / 522
页数:16
相关论文
共 50 条
  • [31] Guided residual network for RGB-D salient object detection with efficient depth feature learning
    Jian Wang
    Shuhan Chen
    Xiao Lv
    Xiuqi Xu
    Xuelong Hu
    [J]. The Visual Computer, 2022, 38 : 1803 - 1814
  • [32] Depth Enhanced Cross-Modal Cascaded Network for RGB-D Salient Object Detection
    Zhengyun Zhao
    Ziqing Huang
    Xiuli Chai
    Jun Wang
    [J]. Neural Processing Letters, 2023, 55 : 361 - 384
  • [33] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    [J]. Computational Visual Media, 2021, 7 (01) : 37 - 69
  • [34] RGB-D salient object detection: A survey
    Zhou, Tao
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    [J]. COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) : 37 - 69
  • [35] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    [J]. Computational Visual Media, 2021, 7 : 37 - 69
  • [36] Calibrated RGB-D Salient Object Detection
    Ji, Wei
    Li, Jingjing
    Yu, Shuang
    Zhang, Miao
    Piao, Yongri
    Yao, Shunyu
    Bi, Qi
    Ma, Kai
    Zheng, Yefeng
    Lu, Huchuan
    Cheng, Li
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9466 - 9476
  • [37] OBJECT-AWARE CALIBRATED DEPTH-GUIDED TRANSFORMER FOR RGB-D CO-SALIENT OBJECT DETECTION
    Wu, Yang
    Liang, Lingyan
    Zhao, Yaqian
    Zhang, Kaihua
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1121 - 1126
  • [38] Bidirectional feature learning network for RGB-D salient object detection
    Niu, Ye
    Zhou, Sanping
    Dong, Yonghao
    Wang, Le
    Wang, Jinjun
    Zheng, Nanning
    [J]. PATTERN RECOGNITION, 2024, 150
  • [39] Feature Calibrating and Fusing Network for RGB-D Salient Object Detection
    Zhang, Qiang
    Qin, Qi
    Yang, Yang
    Jiao, Qiang
    Han, Jungong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1493 - 1507
  • [40] GroupTransNet: Group transformer network for RGB-D salient object detection
    Fang, Xian
    Jiang, Mingfeng
    Zhu, Jinchao
    Shao, Xiuli
    Wang, Hongpeng
    [J]. NEUROCOMPUTING, 2024, 594