Delving into Calibrated Depth for Accurate RGB-D Salient Object Detection

被引:0
|
作者
Jingjing Li
Wei Ji
Miao Zhang
Yongri Piao
Huchuan Lu
Li Cheng
机构
[1] University of Alberta,Department of Electrical and Computer Engineering
[2] Dalian University of Technology,undefined
来源
关键词
RGB-D salient object detection; Neural networks; Deep learning; Saliency detection;
D O I
暂无
中图分类号
学科分类号
摘要
Recent years have witnessed growing interests in RGB-D Salient Object Detection (SOD), benefiting from the ample spatial layout cues embedded in depth maps to help SOD models distinguish salient objects from complex backgrounds or similar surroundings. Despite these progresses, this emerging line of research has been considerably hindered by the noise and ambiguity that prevail in raw depth images, as well as the coarse object boundaries in saliency predictions. To address the aforementioned issues, we propose a Depth Calibration and Boundary-aware Fusion (DCBF) framework that contains two novel components: (1) a learning strategy to calibrate the latent bias in the original depth maps towards boosting the SOD performance; (2) a boundary-aware multimodal fusion module to fuse the complementary cues from RGB and depth channels, as well as to improve object boundary qualities. In addition, we introduce a new saliency dataset, HiBo-UA, which contains 1515 high-resolution RGB-D images with finely-annotated pixel-level labels. To our best knowledge, this is the first RGB-D-based high-resolution saliency dataset with significantly higher image resolution (nearly 7×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}) than the widely used DUT-D dataset. The proposed high-resolution dataset with richer object boundary details is capable of accurately assessing the performance of various saliency models, in order to retain fine-grained object boundaries. It also facilitates the growing need of our research community in accessing higher-resolution data. Extensive empirical experiments demonstrate the superior performance of our approach against 31 state-of-the-art methods. It is worth noting that our calibrated depth alone can work in a plug-and-play manner; empirically it is shown to bring noticeable improvements when applied to existing state-of-the-art RGB-D SOD models.
引用
收藏
页码:855 / 876
页数:21
相关论文
共 50 条
  • [1] Delving into Calibrated Depth for Accurate RGB-D Salient Object Detection
    Li, Jingjing
    Ji, Wei
    Zhang, Miao
    Piao, Yongri
    Lu, Huchuan
    Cheng, Li
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (04) : 855 - 876
  • [2] Calibrated RGB-D Salient Object Detection
    Ji, Wei
    Li, Jingjing
    Yu, Shuang
    Zhang, Miao
    Piao, Yongri
    Yao, Shunyu
    Bi, Qi
    Ma, Kai
    Zheng, Yefeng
    Lu, Huchuan
    Cheng, Li
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9466 - 9476
  • [3] OBJECT-AWARE CALIBRATED DEPTH-GUIDED TRANSFORMER FOR RGB-D CO-SALIENT OBJECT DETECTION
    Wu, Yang
    Liang, Lingyan
    Zhao, Yaqian
    Zhang, Kaihua
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1121 - 1126
  • [4] CDNet: Complementary Depth Network for RGB-D Salient Object Detection
    Jin, Wen-Da
    Xu, Jun
    Han, Qi
    Zhang, Yi
    Cheng, Ming-Ming
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3376 - 3390
  • [5] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    [J]. Computational Visual Media, 2021, 7 : 37 - 69
  • [6] RGB-D salient object detection: A survey
    Zhou, Tao
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    [J]. COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) : 37 - 69
  • [7] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    [J]. Computational Visual Media, 2021, 7 (01) : 37 - 69
  • [8] HiDAnet: RGB-D Salient Object Detection via Hierarchical Depth Awareness
    Wu, Zongwei
    Allibert, Guillaume
    Meriaudeau, Fabrice
    Ma, Chao
    Demonceaux, Cedric
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 2160 - 2173
  • [9] Synergizing triple attention with depth quality for RGB-D salient object detection
    Song, Peipei
    Li, Wenyu
    Zhong, Peiyan
    Zhang, Jing
    Konuisz, Piotr
    Duan, Feng
    Barnes, Nick
    [J]. NEUROCOMPUTING, 2024, 589
  • [10] Depth-aware lightweight network for RGB-D salient object detection
    Ling, Liuyi
    Wang, Yiwen
    Wang, Chengjun
    Xu, Shanyong
    Huang, Yourui
    [J]. IET IMAGE PROCESSING, 2023, 17 (08) : 2350 - 2361