HiDAnet: RGB-D Salient Object Detection via Hierarchical Depth Awareness

被引:30
|
作者
Wu, Zongwei [1 ,2 ]
Allibert, Guillaume [3 ]
Meriaudeau, Fabrice [4 ]
Ma, Chao [2 ]
Demonceaux, Cedric [1 ]
机构
[1] Univ Bourgogne, ImViA Lab, F-21078 Dijon, France
[2] Shanghai Jiao Tong Univ, AI Inst, MOE Key Lab Artificial Intelligence, Shanghai 200240, Peoples R China
[3] Univ Cote dAzur, Ctr Natl Rech Sci CNRS, I3S Lab, F-06000 Nice, France
[4] Univ Bourgogne, ICMUB UMR CNRS 6302, F-21078 Dijon, France
关键词
Depth-aware channel attention; RGB-D saliency detection;
D O I
10.1109/TIP.2023.3263111
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
RGB-D saliency detection aims to fuse multi-modal cues to accurately localize salient regions. Existing works often adopt attention modules for feature modeling, with few methods explicitly leveraging fine-grained details to merge with semantic cues. Thus, despite the auxiliary depth information, it is still challenging for existing models to distinguish objects with similar appearances but at distinct camera distances. In this paper, from a new perspective, we propose a novel Hierarchical Depth Awareness network (HiDAnet) for RGB-D saliency detection. Our motivation comes from the observation that the multi-granularity properties of geometric priors correlate well with the neural network hierarchies. To realize multi-modal and multi-level fusion, we first use a granularity-based attention scheme to strengthen the discriminatory power of RGB and depth features separately. Then we introduce a unified cross dual-attention module for multi-modal and multi-level fusion in a coarse-to-fine manner. The encoded multi-modal features are gradually aggregated into a shared decoder. Further, we exploit a multi-scale loss to take full advantage of the hierarchical information. Extensive experiments on challenging benchmark datasets demonstrate that our HiDAnet performs favorably over the state-of-the-art methods by large margins. The source code can be found in https://github.com/Zongwei97/HIDANet/.
引用
收藏
页码:2160 / 2173
页数:14
相关论文
共 50 条
  • [1] RGB-D Salient Object Detection With Ubiquitous Target Awareness
    Zhao, Yifan
    Zhao, Jiawei
    Li, Jia
    Chen, Xiaowu
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 7717 - 7731
  • [2] Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection
    Li, Gongyang
    Liu, Zhi
    Chen, Minyu
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3528 - 3542
  • [3] Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection
    Li, Gongyang
    Liu, Zhi
    Chen, Minyu
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    [J]. IEEE Transactions on Image Processing, 2021, 30 : 3528 - 3542
  • [4] Delving into Calibrated Depth for Accurate RGB-D Salient Object Detection
    Li, Jingjing
    Ji, Wei
    Zhang, Miao
    Piao, Yongri
    Lu, Huchuan
    Cheng, Li
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (04) : 855 - 876
  • [5] CDNet: Complementary Depth Network for RGB-D Salient Object Detection
    Jin, Wen-Da
    Xu, Jun
    Han, Qi
    Zhang, Yi
    Cheng, Ming-Ming
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3376 - 3390
  • [6] Delving into Calibrated Depth for Accurate RGB-D Salient Object Detection
    Jingjing Li
    Wei Ji
    Miao Zhang
    Yongri Piao
    Huchuan Lu
    Li Cheng
    [J]. International Journal of Computer Vision, 2023, 131 : 855 - 876
  • [7] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    [J]. Computational Visual Media, 2021, 7 (01) : 37 - 69
  • [8] RGB-D salient object detection: A survey
    Zhou, Tao
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    [J]. COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) : 37 - 69
  • [9] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    [J]. Computational Visual Media, 2021, 7 : 37 - 69
  • [10] Calibrated RGB-D Salient Object Detection
    Ji, Wei
    Li, Jingjing
    Yu, Shuang
    Zhang, Miao
    Piao, Yongri
    Yao, Shunyu
    Bi, Qi
    Ma, Kai
    Zheng, Yefeng
    Lu, Huchuan
    Cheng, Li
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9466 - 9476