HiDAnet: RGB-D Salient Object Detection via Hierarchical Depth Awareness

被引:30
|
作者
Wu, Zongwei [1 ,2 ]
Allibert, Guillaume [3 ]
Meriaudeau, Fabrice [4 ]
Ma, Chao [2 ]
Demonceaux, Cedric [1 ]
机构
[1] Univ Bourgogne, ImViA Lab, F-21078 Dijon, France
[2] Shanghai Jiao Tong Univ, AI Inst, MOE Key Lab Artificial Intelligence, Shanghai 200240, Peoples R China
[3] Univ Cote dAzur, Ctr Natl Rech Sci CNRS, I3S Lab, F-06000 Nice, France
[4] Univ Bourgogne, ICMUB UMR CNRS 6302, F-21078 Dijon, France
关键词
Depth-aware channel attention; RGB-D saliency detection;
D O I
10.1109/TIP.2023.3263111
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
RGB-D saliency detection aims to fuse multi-modal cues to accurately localize salient regions. Existing works often adopt attention modules for feature modeling, with few methods explicitly leveraging fine-grained details to merge with semantic cues. Thus, despite the auxiliary depth information, it is still challenging for existing models to distinguish objects with similar appearances but at distinct camera distances. In this paper, from a new perspective, we propose a novel Hierarchical Depth Awareness network (HiDAnet) for RGB-D saliency detection. Our motivation comes from the observation that the multi-granularity properties of geometric priors correlate well with the neural network hierarchies. To realize multi-modal and multi-level fusion, we first use a granularity-based attention scheme to strengthen the discriminatory power of RGB and depth features separately. Then we introduce a unified cross dual-attention module for multi-modal and multi-level fusion in a coarse-to-fine manner. The encoded multi-modal features are gradually aggregated into a shared decoder. Further, we exploit a multi-scale loss to take full advantage of the hierarchical information. Extensive experiments on challenging benchmark datasets demonstrate that our HiDAnet performs favorably over the state-of-the-art methods by large margins. The source code can be found in https://github.com/Zongwei97/HIDANet/.
引用
收藏
页码:2160 / 2173
页数:14
相关论文
共 50 条
  • [21] Depth-inspired Label Mining for Unsupervised RGB-D Salient Object Detection
    Yang, Teng
    Wang, Yue
    Zhang, Lu
    Qi, Jinqing
    Lu, Huchuan
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 5669 - 5677
  • [22] HFMDNet: Hierarchical Fusion and Multilevel Decoder Network for RGB-D Salient Object Detection
    Luo, Yi
    Shao, Feng
    Xie, Zhengxuan
    Wang, Huizhi
    Chen, Hangwei
    Mu, Baoyang
    Jiang, Qiuping
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 15
  • [23] RGB-D salient object detection via deep fusion of semantics and details
    Zhao, Shimin
    Chen, Miaomiao
    Wang, Pengjie
    Cao, Ying
    Zhang, Pingping
    Yang, Xin
    [J]. COMPUTER ANIMATION AND VIRTUAL WORLDS, 2020, 31 (4-5)
  • [24] Object Discovery on RGB-D Data via Salient Object Proposals
    Li, Wanyi
    Wang, Peng
    Qiao, Hong
    Fan, Naiji
    Zhou, Hai
    Jing, Feng
    [J]. 2015 CHINESE AUTOMATION CONGRESS (CAC), 2015, : 737 - 739
  • [25] AirSOD: A Lightweight Network for RGB-D Salient Object Detection
    Zeng, Zhihong
    Liu, Haijun
    Chen, Fenglei
    Tan, Xiaoheng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1656 - 1669
  • [26] Aggregate interactive learning for RGB-D salient object detection
    Wu, Jingyu
    Sun, Fuming
    Xu, Rui
    Meng, Jie
    Wang, Fasheng
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 195
  • [27] Local Background Enclosure for RGB-D Salient Object Detection
    Feng, David
    Barnes, Nick
    You, Shaodi
    McCarthy, Chris
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2343 - 2350
  • [28] Bifurcated Backbone Strategy for RGB-D Salient Object Detection
    Zhai, Yingjie
    Fan, Deng-Ping
    Yang, Jufeng
    Borji, Ali
    Shao, Ling
    Han, Junwei
    Wang, Liang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 8727 - 8742
  • [29] Circular Complement Network for RGB-D Salient Object Detection
    Bai, Zhen
    Liu, Zhi
    Li, Gongyang
    Ye, Linwei
    Wang, Yang
    [J]. NEUROCOMPUTING, 2021, 451 : 95 - 106
  • [30] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1949 - 1961