RGB-D salient object detection via deep fusion of semantics and details

被引:3
|
作者
Zhao, Shimin [1 ]
Chen, Miaomiao [1 ]
Wang, Pengjie [1 ]
Cao, Ying [2 ]
Zhang, Pingping [3 ]
Yang, Xin [3 ]
机构
[1] Dalian Minzu Univ, Sch Comp Sci, Dalian 116600, Peoples R China
[2] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[3] Dalian Univ Technol, Sch Comp Sci, Dalian, Peoples R China
关键词
cross-model and multilevel features; feature fusion and deep fusion; RGB-D; salient object detection;
D O I
10.1002/cav.1954
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we address RGB-D salient object detection task by jointly leveraging semantics and contour details of salient objects. We propose a novel semantics-and-details complementary fusion network to adaptively integrate cross-model and multilevel features. Specifically, we employ two kinds of fusion modules in our model, which are designed for fusing high-level semantic features and integrating contour detail features of the scene components, respectively. The semantics fusion module aggregates high-level interdependent semantic relationships by a nonlinear weighted summation of small and medium receptive fields. Meanwhile, the details module integrates multi-level contour detail features to leverage expressive details of salient objects. We achieve new state-of-the-art salient object detection results on seven RGB-D datasets, that is, STERE, NJU2000, LFSD, NLPR, SSD, DES, and SIP2019 dataset. Experimental results demonstrate that our method outperforms eleven state-of-the-art salient object detection methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] CoCNN: RGB-D deep fusion for stereoscopic salient object detection
    Liang, Fangfang
    Duan, Lijuan
    Ma, Wei
    Qiao, Yuanhua
    Cai, Zhi
    Miao, Jun
    Ye, Qixiang
    [J]. PATTERN RECOGNITION, 2020, 104
  • [2] Adaptive Fusion for RGB-D Salient Object Detection
    Wang, Ningning
    Gong, Xiaojin
    [J]. IEEE ACCESS, 2019, 7 : 55277 - 55284
  • [3] Discriminative feature fusion for RGB-D salient object detection
    Chen, Zeyu
    Zhu, Mingyu
    Chen, Shuhan
    Lu, Lu
    Tang, Haonan
    Hu, Xuelong
    Ji, Chunfan
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2023, 106
  • [4] Bifurcation Fusion Network for RGB-D Salient Object Detection
    Zhao, Zhi-Hua
    Chen, Li
    [J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (12)
  • [5] Adaptive fusion network for RGB-D salient object detection
    Chen, Tianyou
    Xiao, Jin
    Hu, Xiaoguang
    Zhang, Guofeng
    Wang, Shaojie
    [J]. NEUROCOMPUTING, 2023, 522 : 152 - 164
  • [6] An adaptive guidance fusion network for RGB-D salient object detection
    Sun, Haodong
    Wang, Yu
    Ma, Xinpeng
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1683 - 1693
  • [7] RGB-D Fusion Based on Fuzzy Optimization for Salient Object Detection
    Bhuyan, Sudipta
    Sen, Debashis
    Deb, Sankha
    [J]. PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2023, 2023, 14301 : 523 - 531
  • [8] Scale Adaptive Fusion Network for RGB-D Salient Object Detection
    Kong, Yuqiu
    Zheng, Yushuo
    Yao, Cuili
    Liu, Yang
    Wang, He
    [J]. COMPUTER VISION - ACCV 2022, PT III, 2023, 13843 : 608 - 625
  • [9] RGB-D Salient Object Detection by a CNN With Multiple Layers Fusion
    Huang, Rui
    Xing, Yan
    Wang, ZeZheng
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (04) : 552 - 556
  • [10] An adaptive guidance fusion network for RGB-D salient object detection
    Haodong Sun
    Yu Wang
    Xinpeng Ma
    [J]. Signal, Image and Video Processing, 2024, 18 : 1683 - 1693