HiDAnet: RGB-D Salient Object Detection via Hierarchical Depth Awareness

被引:30
|
作者
Wu, Zongwei [1 ,2 ]
Allibert, Guillaume [3 ]
Meriaudeau, Fabrice [4 ]
Ma, Chao [2 ]
Demonceaux, Cedric [1 ]
机构
[1] Univ Bourgogne, ImViA Lab, F-21078 Dijon, France
[2] Shanghai Jiao Tong Univ, AI Inst, MOE Key Lab Artificial Intelligence, Shanghai 200240, Peoples R China
[3] Univ Cote dAzur, Ctr Natl Rech Sci CNRS, I3S Lab, F-06000 Nice, France
[4] Univ Bourgogne, ICMUB UMR CNRS 6302, F-21078 Dijon, France
关键词
Depth-aware channel attention; RGB-D saliency detection;
D O I
10.1109/TIP.2023.3263111
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
RGB-D saliency detection aims to fuse multi-modal cues to accurately localize salient regions. Existing works often adopt attention modules for feature modeling, with few methods explicitly leveraging fine-grained details to merge with semantic cues. Thus, despite the auxiliary depth information, it is still challenging for existing models to distinguish objects with similar appearances but at distinct camera distances. In this paper, from a new perspective, we propose a novel Hierarchical Depth Awareness network (HiDAnet) for RGB-D saliency detection. Our motivation comes from the observation that the multi-granularity properties of geometric priors correlate well with the neural network hierarchies. To realize multi-modal and multi-level fusion, we first use a granularity-based attention scheme to strengthen the discriminatory power of RGB and depth features separately. Then we introduce a unified cross dual-attention module for multi-modal and multi-level fusion in a coarse-to-fine manner. The encoded multi-modal features are gradually aggregated into a shared decoder. Further, we exploit a multi-scale loss to take full advantage of the hierarchical information. Extensive experiments on challenging benchmark datasets demonstrate that our HiDAnet performs favorably over the state-of-the-art methods by large margins. The source code can be found in https://github.com/Zongwei97/HIDANet/.
引用
收藏
页码:2160 / 2173
页数:14
相关论文
共 50 条
  • [41] A salient object detection algorithm based on RGB-D images
    Song, Can
    Wu, Jin
    Deng, Huiping
    Zhu, Lei
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 1692 - 1697
  • [42] Depth Enhanced Cross-Modal Cascaded Network for RGB-D Salient Object Detection
    Zhao, Zhengyun
    Huang, Ziqing
    Chai, Xiuli
    Wang, Jun
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (01) : 361 - 384
  • [43] HierN et: Hierarchical Transformer U -Shape Network for RGB-D Salient Object Detection
    Lv, Pengfei
    Yu, Xiaosheng
    Wang, Junxiang
    Wu, Chengdong
    [J]. 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 1807 - 1811
  • [44] Saliency Prototype for RGB-D and RGB-T Salient Object Detection
    Zhang, Zihao
    Wang, Jie
    Han, Yahong
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3696 - 3705
  • [45] SiaTrans: Siamese transformer network for RGB-D salient object detection with depth image classification
    Jia, XingZhao
    DongYe, ChangLei
    Peng, YanJun
    [J]. IMAGE AND VISION COMPUTING, 2022, 127
  • [46] Depth Quality-Inspired Feature Manipulation for Efficient RGB-D Salient Object Detection
    Zhang, Wenbo
    Ji, Ge-Peng
    Wang, Zhuo
    Fu, Keren
    Zhao, Qijun
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 731 - 740
  • [47] DAST: Depth-Aware Assessment and Synthesis Transformer for RGB-D Salient Object Detection
    Xia, Chenxing
    Duan, Songsong
    Fang, Xianjin
    Ge, Bin
    Gao, Xiuju
    Cui, Jianhua
    [J]. PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2022, 13630 : 473 - 487
  • [48] Depth Enhanced Cross-Modal Cascaded Network for RGB-D Salient Object Detection
    Zhengyun Zhao
    Ziqing Huang
    Xiuli Chai
    Jun Wang
    [J]. Neural Processing Letters, 2023, 55 : 361 - 384
  • [49] Guided residual network for RGB-D salient object detection with efficient depth feature learning
    Jian Wang
    Shuhan Chen
    Xiao Lv
    Xiuqi Xu
    Xuelong Hu
    [J]. The Visual Computer, 2022, 38 : 1803 - 1814
  • [50] Improving RGB-D Salient Object Detection via Modality-Aware Decoder
    Song, Mengke
    Song, Wenfeng
    Yang, Guowei
    Chen, Chenglizhao
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6124 - 6138