SiaTrans: Siamese transformer network for RGB-D salient object detection with depth image classification

被引:8
|
作者
Jia, XingZhao [1 ]
DongYe, ChangLei [1 ]
Peng, YanJun [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Transformer; RGB-D salient object detection; Siamese network; Image classi fication; MODEL;
D O I
10.1016/j.imavis.2022.104549
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
RGB-D SOD uses depth information to handle challenging scenes and obtain high-quality saliency maps. Existing state-of-the-art RGB-D saliency detection methods overwhelmingly rely on the strategy of directly fusing depth information. Although these methods improve the accuracy of saliency prediction through various cross -modality fusion strategies, misinformation provided by some poor-quality depth images can affect the saliency prediction result. To address this issue, a novel RGB-D salient object detection model (SiaTrans) is proposed in this paper, which allows training on depth image quality classification at the same time as training on SOD. In light of the common information between RGB and depth images on salient objects, SiaTrans uses a Siamese transformer network with shared weight parameters as the encoder and extracts RGB and depth features concatenated on the batch dimension, saving space resources without compromising performance. SiaTrans uses the class token in the backbone network (T2T-ViT) to classify the quality of depth images without prevent-ing the token sequence from going on with the saliency detection task. The greatest benefit of our cross-modality fusion (CMF) and decoder is that they maintain consistency between RGB and RGB-D information decoding. In the test, SiaTrans decides whether to perform an RGB-D or RGB saliency detection task according to the quality classification signal of the depth image. Comprehensive experiments on nine RGB-D SOD benchmark datasets show that SiaTrans has the best overall performance and the least computation compared with recent state-of-the-art methods.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Siamese Network for RGB-D Salient Object Detection and Beyond
    Fu, Keren
    Fan, Deng-Ping
    Ji, Ge-Peng
    Zhao, Qijun
    Shen, Jianbing
    Zhu, Ce
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5541 - 5559
  • [2] GroupTransNet: Group transformer network for RGB-D salient object detection
    Fang, Xian
    Jiang, Mingfeng
    Zhu, Jinchao
    Shao, Xiuli
    Wang, Hongpeng
    [J]. NEUROCOMPUTING, 2024, 594
  • [3] CDNet: Complementary Depth Network for RGB-D Salient Object Detection
    Jin, Wen-Da
    Xu, Jun
    Han, Qi
    Zhang, Yi
    Cheng, Ming-Ming
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3376 - 3390
  • [4] CSNet: a ConvNeXt-based Siamese network for RGB-D salient object detection
    Yunhua Zhang
    Hangxu Wang
    Gang Yang
    Jianhao Zhang
    Congjin Gong
    Yutao Wang
    [J]. The Visual Computer, 2024, 40 : 1805 - 1823
  • [5] CSNet: a ConvNeXt-based Siamese network for RGB-D salient object detection
    Zhang, Yunhua
    Wang, Hangxu
    Yang, Gang
    Zhang, Jianhao
    Gong, Congjin
    Wang, Yutao
    [J]. VISUAL COMPUTER, 2024, 40 (03): : 1805 - 1823
  • [6] TriTransNet: RGB-D Salient Object Detection with a Triplet Transformer Embedding Network
    Liu, Zhengyi
    Wang, Yuan
    Tu, Zhengzheng
    Xiao, Yun
    Tang, Bin
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 4481 - 4490
  • [7] CATNet: A Cascaded and Aggregated Transformer Network for RGB-D Salient Object Detection
    Sun, Fuming
    Ren, Peng
    Yin, Bowen
    Wang, Fasheng
    Li, Haojie
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 2249 - 2262
  • [8] Depth cue enhancement and guidance network for RGB-D salient object detection
    Li, Xiang
    Zhang, Qing
    Yan, Weiqi
    Dai, Meng
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 95
  • [9] Depth-aware lightweight network for RGB-D salient object detection
    Ling, Liuyi
    Wang, Yiwen
    Wang, Chengjun
    Xu, Shanyong
    Huang, Yourui
    [J]. IET IMAGE PROCESSING, 2023, 17 (08) : 2350 - 2361
  • [10] TANet: Transformer-based asymmetric network for RGB-D salient object detection
    Liu, Chang
    Yang, Gang
    Wang, Shuo
    Wang, Hangxu
    Zhang, Yunhua
    Wang, Yutao
    [J]. IET COMPUTER VISION, 2023, 17 (04) : 415 - 430