SiaTrans: Siamese transformer network for RGB-D salient object detection with depth image classification

被引:8
|
作者
Jia, XingZhao [1 ]
DongYe, ChangLei [1 ]
Peng, YanJun [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Transformer; RGB-D salient object detection; Siamese network; Image classi fication; MODEL;
D O I
10.1016/j.imavis.2022.104549
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
RGB-D SOD uses depth information to handle challenging scenes and obtain high-quality saliency maps. Existing state-of-the-art RGB-D saliency detection methods overwhelmingly rely on the strategy of directly fusing depth information. Although these methods improve the accuracy of saliency prediction through various cross -modality fusion strategies, misinformation provided by some poor-quality depth images can affect the saliency prediction result. To address this issue, a novel RGB-D salient object detection model (SiaTrans) is proposed in this paper, which allows training on depth image quality classification at the same time as training on SOD. In light of the common information between RGB and depth images on salient objects, SiaTrans uses a Siamese transformer network with shared weight parameters as the encoder and extracts RGB and depth features concatenated on the batch dimension, saving space resources without compromising performance. SiaTrans uses the class token in the backbone network (T2T-ViT) to classify the quality of depth images without prevent-ing the token sequence from going on with the saliency detection task. The greatest benefit of our cross-modality fusion (CMF) and decoder is that they maintain consistency between RGB and RGB-D information decoding. In the test, SiaTrans decides whether to perform an RGB-D or RGB saliency detection task according to the quality classification signal of the depth image. Comprehensive experiments on nine RGB-D SOD benchmark datasets show that SiaTrans has the best overall performance and the least computation compared with recent state-of-the-art methods.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Bifurcation Fusion Network for RGB-D Salient Object Detection
    Zhao, Zhi-Hua
    Chen, Li
    [J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (12)
  • [22] Adaptive fusion network for RGB-D salient object detection
    Chen, Tianyou
    Xiao, Jin
    Hu, Xiaoguang
    Zhang, Guofeng
    Wang, Shaojie
    [J]. NEUROCOMPUTING, 2023, 522 : 152 - 164
  • [23] Delving into Calibrated Depth for Accurate RGB-D Salient Object Detection
    Li, Jingjing
    Ji, Wei
    Zhang, Miao
    Piao, Yongri
    Lu, Huchuan
    Cheng, Li
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (04) : 855 - 876
  • [24] Swin Transformer-Based Edge Guidance Network for RGB-D Salient Object Detection
    Wang, Shuaihui
    Jiang, Fengyi
    Xu, Boqian
    [J]. SENSORS, 2023, 23 (21)
  • [25] Delving into Calibrated Depth for Accurate RGB-D Salient Object Detection
    Jingjing Li
    Wei Ji
    Miao Zhang
    Yongri Piao
    Huchuan Lu
    Li Cheng
    [J]. International Journal of Computer Vision, 2023, 131 : 855 - 876
  • [26] HierN et: Hierarchical Transformer U -Shape Network for RGB-D Salient Object Detection
    Lv, Pengfei
    Yu, Xiaosheng
    Wang, Junxiang
    Wu, Chengdong
    [J]. 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 1807 - 1811
  • [27] Guided residual network for RGB-D salient object detection with efficient depth feature learning
    Wang, Jian
    Chen, Shuhan
    Lv, Xiao
    Xu, Xiuqi
    Hu, Xuelong
    [J]. VISUAL COMPUTER, 2022, 38 (05): : 1803 - 1814
  • [28] Depth Enhanced Cross-Modal Cascaded Network for RGB-D Salient Object Detection
    Zhao, Zhengyun
    Huang, Ziqing
    Chai, Xiuli
    Wang, Jun
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (01) : 361 - 384
  • [29] Guided residual network for RGB-D salient object detection with efficient depth feature learning
    Jian Wang
    Shuhan Chen
    Xiao Lv
    Xiuqi Xu
    Xuelong Hu
    [J]. The Visual Computer, 2022, 38 : 1803 - 1814
  • [30] Depth Enhanced Cross-Modal Cascaded Network for RGB-D Salient Object Detection
    Zhengyun Zhao
    Ziqing Huang
    Xiuli Chai
    Jun Wang
    [J]. Neural Processing Letters, 2023, 55 : 361 - 384