Security in Sierpinski graphs

被引:2
|
作者
Menon, Manju K. [1 ]
Chithra, M. R. [2 ]
Savitha, K. S. [1 ]
机构
[1] St Pauls Coll, Dept Math, Kalamassery 683503, India
[2] Univ Kerala, Dept Math, Thiruvananthapuram 695581, Kerala, India
关键词
Sierpinski graphs; Secure sets; Secure dominating sets;
D O I
10.1016/j.dam.2022.11.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A secure set S subset of V of a graph G = (V, E) is a set whose every nonempty subset can be successfully defended from an attack, under appropriate definitions of 'attack' and 'defense'. The set S is secure when vertical bar N[X]boolean AND S vertical bar >= vertical bar N[X] - S vertical bar for every X subset of S. A set S subset of V is secure dominating if it is both secure and dominating. The minimum cardinality of a secure set in G is the security number of G, s(G), and the minimum cardinality of a secure-dominating set in G is the secure domination number of G, gamma(s)(G). In this paper, we initiate a study of these parameters in the well-known Sierpinski graphs. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:10 / 15
页数:6
相关论文
共 50 条
  • [1] Coloring Sierpinski graphs and Sierpinski gasket graphs
    Klavzar, Sandi
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (02): : 513 - 522
  • [2] THE PALETTE INDEX OF SIERPINSKI TRIANGLE GRAPHS AND SIERPINSKI GRAPHS
    Ghazaryan, A.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2021, (54): : 99 - 108
  • [3] ON GENERALIZED SIERPINSKI GRAPHS
    Alberto Rodriguez-Velazquez, Juan
    David Rodriguez-Bazan, Erick
    Estrada-Moreno, Alejandro
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 547 - 560
  • [4] The median of Sierpinski graphs
    Balakrishnan, Kannan
    Changat, Manoj
    Hinz, Andreas M.
    Lekha, Divya Sindhu
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 159 - 170
  • [5] Coloring the Square of Sierpinski Graphs
    Xue, Bing
    Zuo, Liancui
    Li, Guojun
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1795 - 1805
  • [6] ON DISTANCES IN GENERALIZED SIERPINSKI GRAPHS
    Estrada-Moreno, Alejandro
    Rodriguez-Bazan, Erick D.
    Rodriguez-Velazquez, Juan A.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2018, 12 (01) : 49 - 69
  • [7] Intruder capture in sierpinski graphs
    Luccio, Flaminia L.
    FUN WITH ALGORITHMS, PROCEEDINGS, 2007, 4475 : 249 - 261
  • [8] RECOGNIZING GENERALIZED SIERPINSKI GRAPHS
    Imrich, Wilfried
    Peterin, Iztok
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2020, 14 (01) : 122 - 137
  • [9] Properties of Sierpinski Triangle Graphs
    Bickle, Allan
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 295 - 303
  • [10] Broadcasting in Sierpinski gasket graphs
    Shanthakumari, A.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 92 : 111 - 119