Security in Sierpinski graphs

被引:2
|
作者
Menon, Manju K. [1 ]
Chithra, M. R. [2 ]
Savitha, K. S. [1 ]
机构
[1] St Pauls Coll, Dept Math, Kalamassery 683503, India
[2] Univ Kerala, Dept Math, Thiruvananthapuram 695581, Kerala, India
关键词
Sierpinski graphs; Secure sets; Secure dominating sets;
D O I
10.1016/j.dam.2022.11.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A secure set S subset of V of a graph G = (V, E) is a set whose every nonempty subset can be successfully defended from an attack, under appropriate definitions of 'attack' and 'defense'. The set S is secure when vertical bar N[X]boolean AND S vertical bar >= vertical bar N[X] - S vertical bar for every X subset of S. A set S subset of V is secure dominating if it is both secure and dominating. The minimum cardinality of a secure set in G is the security number of G, s(G), and the minimum cardinality of a secure-dominating set in G is the secure domination number of G, gamma(s)(G). In this paper, we initiate a study of these parameters in the well-known Sierpinski graphs. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:10 / 15
页数:6
相关论文
共 50 条
  • [41] On the packing coloring of base-3 Sierpinski graphs and H-graphs
    Deng, Fei
    Shao, Zehui
    Vesel, Aleksander
    AEQUATIONES MATHEMATICAE, 2021, 95 (02) : 329 - 341
  • [42] {Pr}-free colorings of Sierpinski-like graphs
    Fu, Hong-Yong
    ARS COMBINATORIA, 2012, 105 : 513 - 524
  • [43] Hamming dimension of a graph-The case of Sierpinski graphs
    Klavzar, Sandi
    Peterin, Iztok
    Zemljic, Sara Sabrina
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (02) : 460 - 473
  • [44] Precious Metal Sequences and Sierpinski-Type Graphs
    Hinz, Andreas M.
    Stockmeyer, Paul K.
    JOURNAL OF INTEGER SEQUENCES, 2022, 25 (04)
  • [45] FEEDBACK VERTEX NUMBER OF SIERPINSKI-TYPE GRAPHS
    Yuan, Lili
    Wu, Baoyindureng
    Zhao, Biao
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2019, 14 (01) : 130 - 149
  • [46] CONNECTIVITY AND SOME OTHER PROPERTIES OF GENERALIZED SIERPINSKI GRAPHS
    Klavzar, Sandi
    Zemljic, Sara Sabrina
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2018, 12 (02) : 401 - 412
  • [47] Fractality and the small-world effect in Sierpinski graphs
    Barriere, Lali
    Comellas, Francesc
    Dalfo, Cristina
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (38): : 11739 - 11753
  • [48] Random walks on Sierpinski hyperbolicity and Stochastic graphs: Homogenization
    Kaimanovich, VA
    FRACTALS IN GRAZ 2001: ANALYSIS - DYNAMICS - GEOMETRY - STOCHASTICS, 2003, : 145 - 183
  • [49] Computation of Zagreb indices and Zagreb polynomials of Sierpinski graphs
    Siddiqui, Hafiz Muhammad Afzal
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (02): : 754 - 765
  • [50] The double Roman domination number of generalized Sierpinski graphs
    Anu, V
    Lakshmanan, S. Aparna
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (04)