CONNECTIVITY AND SOME OTHER PROPERTIES OF GENERALIZED SIERPINSKI GRAPHS

被引:8
|
作者
Klavzar, Sandi [1 ,2 ,3 ]
Zemljic, Sara Sabrina [3 ,4 ,5 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
[4] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia
[5] Univ Iceland, Sci Inst, Reykjavik, Iceland
关键词
Generalized Sierpinski graph; connectivity; edge-connectivity; 1-factor; Hamiltonian graph; SHORTEST PATHS; DOMINATION; NETWORKS; NUMBER; TOWER;
D O I
10.2298/AADM170206009K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If G is a graph and n a positive integer, then the generalized Sierpinski graph S-G(n) is a fractal-like graph that uses G as a building block. The construction of S-G(n) generalizes the classical Sierpinski graphs S-p(n), where the role of G is played by the complete graph K-p. An explicit formula for the number of connected components in S(G)(n )is given and it is proved that the (edge-)connectivity of S-G(n) equals the (edge-)connectivity of G. It is demonstrated that S-G(n) contains a 1-factor if and only if S-G(n) contains a 1-factor. Hamiltonicity of generalized Sierpinski graphs is also discussed.
引用
收藏
页码:401 / 412
页数:12
相关论文
共 50 条
  • [1] Sierpinski gasket graphs and some of their properties
    Teguia, Alberto M.
    Godbole, Anant P.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 181 - 192
  • [2] ON GENERALIZED SIERPINSKI GRAPHS
    Alberto Rodriguez-Velazquez, Juan
    David Rodriguez-Bazan, Erick
    Estrada-Moreno, Alejandro
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 547 - 560
  • [3] Generalized connectivity of some total graphs
    Yinkui Li
    Yaping Mao
    Zhao Wang
    Zongtian Wei
    [J]. Czechoslovak Mathematical Journal, 2021, 71 : 623 - 640
  • [4] Generalized Connectivity of Some Total Graphs
    Li, Yinkui
    Mao, Yaping
    Wang, Zhao
    Wei, Zongtian
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (03) : 623 - 640
  • [5] Metric properties of generalized Sierpinski graphs over stars
    Alizadeh, Yaser
    Estaji, Ehsan
    Klavzar, Sandi
    Petkovsek, Marko
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 266 : 48 - 55
  • [6] Connectivity and other invariants of generalized products of graphs
    Lopez, S. C.
    Muntaner-Batle, F. A.
    [J]. ACTA MATHEMATICA HUNGARICA, 2015, 145 (02) : 283 - 303
  • [7] Connectivity and other invariants of generalized products of graphs
    S. C. López
    F. A. Muntaner-Batle
    [J]. Acta Mathematica Hungarica, 2015, 145 : 283 - 303
  • [8] ON DISTANCES IN GENERALIZED SIERPINSKI GRAPHS
    Estrada-Moreno, Alejandro
    Rodriguez-Bazan, Erick D.
    Rodriguez-Velazquez, Juan A.
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2018, 12 (01) : 49 - 69
  • [9] RECOGNIZING GENERALIZED SIERPINSKI GRAPHS
    Imrich, Wilfried
    Peterin, Iztok
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2020, 14 (01) : 122 - 137
  • [10] Some topological properties of uniform subdivision of Sierpinski graphs
    Liu, Jia-Bao
    Siddiqui, Hafiz Muhammad Afzal
    Nadeem, Muhammad Faisal
    Binyamin, Muhammad Ahsan
    [J]. MAIN GROUP METAL CHEMISTRY, 2021, 44 (01) : 218 - 227