ON GENERALIZED SIERPINSKI GRAPHS

被引:12
|
作者
Alberto Rodriguez-Velazquez, Juan [1 ]
David Rodriguez-Bazan, Erick [1 ]
Estrada-Moreno, Alejandro [2 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, Tarragona 43007, Spain
[2] Cent Univ Las Villas, Dept Math, Carretera Camajuani Km 5 1-2, Santa Clara, Villa Clara, Cuba
关键词
Sierpinski graphs; vertex cover number; independence number; chromatic number; domination number; DIMENSION; CODES;
D O I
10.7151/dmgt.1945
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we obtain closed formulae for several parameters of generalized Sierpinski graphs S(G, t) in terms of parameters of the base graph G. In particular, we focus on the chromatic, vertex cover, clique and domination numbers.
引用
收藏
页码:547 / 560
页数:14
相关论文
共 50 条
  • [1] ON DISTANCES IN GENERALIZED SIERPINSKI GRAPHS
    Estrada-Moreno, Alejandro
    Rodriguez-Bazan, Erick D.
    Rodriguez-Velazquez, Juan A.
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2018, 12 (01) : 49 - 69
  • [2] RECOGNIZING GENERALIZED SIERPINSKI GRAPHS
    Imrich, Wilfried
    Peterin, Iztok
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2020, 14 (01) : 122 - 137
  • [3] Domination parameters of generalized Sierpinski graphs
    Varghese, Jismy
    Anu, V
    Aparna, Lakshmanan S.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (01) : 4 - 10
  • [4] Total coloring of generalized Sierpinski graphs
    Geetha, J.
    Somasundaram, K.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2015, 63 : 58 - 69
  • [5] Packing coloring of generalized Sierpinski graphs
    Korze, Danilo
    Vesel, Aleksander
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (03):
  • [6] Packing coloring of generalized Sierpinski ´ graphs
    Korže, Danilo
    Vesel, Aleksander
    [J]. Discrete Mathematics and Theoretical Computer Science, 2019, 21 (03):
  • [7] On the Roman Domination Number of Generalized Sierpinski Graphs
    Ramezani, F.
    Rodriguez-Bazan, E. D.
    Rodriguez-Velazquez, J. A.
    [J]. FILOMAT, 2017, 31 (20) : 6515 - 6528
  • [8] ON THE ZERO FORCING NUMBER OF GENERALIZED SIERPINSKI GRAPHS
    Vatandoost, Ebrahim
    Ramezani, Fatemeh
    Alikhani, Saeid
    [J]. TRANSACTIONS ON COMBINATORICS, 2019, 8 (01) : 41 - 50
  • [9] CONNECTIVITY AND SOME OTHER PROPERTIES OF GENERALIZED SIERPINSKI GRAPHS
    Klavzar, Sandi
    Zemljic, Sara Sabrina
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2018, 12 (02) : 401 - 412
  • [10] The double Roman domination number of generalized Sierpinski graphs
    Anu, V
    Lakshmanan, S. Aparna
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (04)