ON DISTANCES IN GENERALIZED SIERPINSKI GRAPHS

被引:8
|
作者
Estrada-Moreno, Alejandro [1 ]
Rodriguez-Bazan, Erick D. [2 ]
Rodriguez-Velazquez, Juan A. [3 ]
机构
[1] Open Univ Catalonia, Comp Sci Dept IN3, Av Carl Friedrich Gauss 5, Barcelona 08860, Spain
[2] Cent Univ Las Villas, Dept Matemath, Carretera Camajuani Km 5 1-2, Villa Clara 50100, Cuba
[3] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, E-43007 Tarragona, Spain
关键词
Sierpitiski graphs; Generalized Sierpitiski graphs; Distances in graphs; SIERPINSKI GRAPHS; METRIC DIMENSION; SHORTEST PATHS; VERTICES; CODES;
D O I
10.2298/AADM160802001E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose formulas for the distance between vertices of a generalized Sierpinski graph S(G, t) in terms of the distance between vertices of the base graph G. In particular, we deduce a recursive formula for the distance between an arbitrary vertex and an extreme vertex of S(G, t), and we obtain a recursive formula for the distance between two arbitrary vertices of S(G, t) when the base graph is triangle-free. From these recursive formulas, we provide algorithms to compute the distance between vertices of S(G, t). In addition, we give an explicit formula for the diameter and radius of S(G, t) when the base graph is a tree.
引用
收藏
页码:49 / 69
页数:21
相关论文
共 50 条
  • [1] ON GENERALIZED SIERPINSKI GRAPHS
    Alberto Rodriguez-Velazquez, Juan
    David Rodriguez-Bazan, Erick
    Estrada-Moreno, Alejandro
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 547 - 560
  • [2] RECOGNIZING GENERALIZED SIERPINSKI GRAPHS
    Imrich, Wilfried
    Peterin, Iztok
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2020, 14 (01) : 122 - 137
  • [3] Domination parameters of generalized Sierpinski graphs
    Varghese, Jismy
    Anu, V
    Aparna, Lakshmanan S.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (01) : 4 - 10
  • [4] Total coloring of generalized Sierpinski graphs
    Geetha, J.
    Somasundaram, K.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2015, 63 : 58 - 69
  • [5] Packing coloring of generalized Sierpinski graphs
    Korze, Danilo
    Vesel, Aleksander
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (03):
  • [6] Packing coloring of generalized Sierpinski ´ graphs
    Korže, Danilo
    Vesel, Aleksander
    [J]. Discrete Mathematics and Theoretical Computer Science, 2019, 21 (03):
  • [7] On the Roman Domination Number of Generalized Sierpinski Graphs
    Ramezani, F.
    Rodriguez-Bazan, E. D.
    Rodriguez-Velazquez, J. A.
    [J]. FILOMAT, 2017, 31 (20) : 6515 - 6528
  • [8] ON THE ZERO FORCING NUMBER OF GENERALIZED SIERPINSKI GRAPHS
    Vatandoost, Ebrahim
    Ramezani, Fatemeh
    Alikhani, Saeid
    [J]. TRANSACTIONS ON COMBINATORICS, 2019, 8 (01) : 41 - 50
  • [9] ON DISTANCES IN SIERPINSKI GRAPHS: ALMOST-EXTREME VERTICES AND METRIC DIMENSION
    Klavzar, Sandi
    Zemljic, Sara Sabrina
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (01) : 72 - 82
  • [10] CONNECTIVITY AND SOME OTHER PROPERTIES OF GENERALIZED SIERPINSKI GRAPHS
    Klavzar, Sandi
    Zemljic, Sara Sabrina
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2018, 12 (02) : 401 - 412