Security in Sierpinski graphs

被引:2
|
作者
Menon, Manju K. [1 ]
Chithra, M. R. [2 ]
Savitha, K. S. [1 ]
机构
[1] St Pauls Coll, Dept Math, Kalamassery 683503, India
[2] Univ Kerala, Dept Math, Thiruvananthapuram 695581, Kerala, India
关键词
Sierpinski graphs; Secure sets; Secure dominating sets;
D O I
10.1016/j.dam.2022.11.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A secure set S subset of V of a graph G = (V, E) is a set whose every nonempty subset can be successfully defended from an attack, under appropriate definitions of 'attack' and 'defense'. The set S is secure when vertical bar N[X]boolean AND S vertical bar >= vertical bar N[X] - S vertical bar for every X subset of S. A set S subset of V is secure dominating if it is both secure and dominating. The minimum cardinality of a secure set in G is the security number of G, s(G), and the minimum cardinality of a secure-dominating set in G is the secure domination number of G, gamma(s)(G). In this paper, we initiate a study of these parameters in the well-known Sierpinski graphs. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:10 / 15
页数:6
相关论文
共 50 条
  • [31] Crossing numbers of Sierpinski-like graphs
    Klavzar, S
    Mohar, B
    JOURNAL OF GRAPH THEORY, 2005, 50 (03) : 186 - 198
  • [32] Spectral Properties of Extended Sierpinski Graphs and Their Applications
    Qi, Yi
    Zhang, Zhongzhi
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2019, 6 (03): : 512 - 522
  • [33] Metric properties of Sierpinski-like graphs
    Luo, Chunmei
    Zuo, Liancui
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 296 : 124 - 136
  • [34] 1-perfect codes in Sierpinski graphs
    Klavzar, S
    Milutinovic, U
    Petr, C
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (03) : 369 - 384
  • [35] The Graovac-Pisanski index of Sierpinski graphs
    Fathalikhani, Khadijeh
    Babai, Azam
    Zemljic, Sara Sabrina
    DISCRETE APPLIED MATHEMATICS, 2020, 285 : 30 - 42
  • [36] On the cop number of Sierpinski-like graphs
    Cakmak, Nazlican
    Akyar, Emrah
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (04)
  • [37] Computing the Wiener Index in Sierpinski Carpet Graphs
    D'Angeli, Daniele
    Donno, Alfredo
    Monti, Alessio
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [38] ON THE ZERO FORCING NUMBER OF GENERALIZED SIERPINSKI GRAPHS
    Vatandoost, Ebrahim
    Ramezani, Fatemeh
    Alikhani, Saeid
    TRANSACTIONS ON COMBINATORICS, 2019, 8 (01) : 41 - 50
  • [39] The Hub Number of Sierpinski-Like Graphs
    Lin, Chien-Hung
    Liu, Jia-Jie
    Wang, Yue-Li
    Yen, William Chung-Kung
    THEORY OF COMPUTING SYSTEMS, 2011, 49 (03) : 588 - 600
  • [40] A survey and classification of Sierpinski-type graphs
    Hinz, Andreas M.
    Klavzar, Sandi
    Zemljic, Sara Sabrina
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 565 - 600