1-perfect codes in Sierpinski graphs

被引:72
|
作者
Klavzar, S
Milutinovic, U
Petr, C
机构
[1] Univ Maribor, Dept Math, PeF, SLO-2000 Maribor, Slovenia
[2] Iskratel Telecommun Syst Ltd, Maribor 2000, Slovenia
关键词
D O I
10.1017/S0004972700040235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sierpinski graphs S(n,k) generalise the Tower of Hanoi graphs-the graph S(n,3) is isomorphic to the graph H-n of the Tower of Hanoi with n disks. A 1-perfect code (or an efficient dominating set) in a graph G is a vertex subset of G with the property that the closed neighbourhoods of its elements form a partition of V(G). It is proved that the graphs S(n, k) possess unique 1-perfect codes, thus extending a previously known result for H-n. An efficient decoding algorithm is also presented. The present approach, in particular the proposed (de)coding, is intrinsically different from the approach to H-n.
引用
收藏
页码:369 / 384
页数:16
相关论文
共 50 条
  • [1] Hamiltonicity of minimum distance graphs of 1-perfect codes
    Romanov, Alexander M.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [2] Multifold 1-perfect codes
    Krotov, Denis S.
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2024, 32 (09) : 546 - 555
  • [3] A characterization of 1-perfect additive codes
    Borges, J
    Rifà, J
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (05) : 1688 - 1697
  • [4] An enumeration of 1-perfect ternary codes
    Shi, Minjia
    Krotov, Denis S.
    [J]. DISCRETE MATHEMATICS, 2023, 346 (07)
  • [5] Propelinear 1-Perfect Codes from Quadratic Functions
    Krotov, Denis S.
    Potapov, Vladimir N.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (04) : 2065 - 2068
  • [6] On the binary codes with parameters of doubly-shortened 1-perfect codes
    Denis S. Krotov
    [J]. Designs, Codes and Cryptography, 2010, 57 : 181 - 194
  • [7] Ranks of q-Ary 1-Perfect Codes
    Kevin T. Phelps
    Mercè Villanueva
    [J]. Designs, Codes and Cryptography, 2002, 27 : 139 - 144
  • [8] On the number of 1-perfect binary codes: A lower bound
    Krotov, Denis S.
    Avgustinovich, Sergey V.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (04) : 1760 - 1765
  • [9] Ranks of q-ary 1-perfect codes
    Phelps, KT
    Villanueva, M
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2002, 27 (1-2) : 139 - 144
  • [10] On the binary codes with parameters of triply-shortened 1-perfect codes
    Denis S. Krotov
    [J]. Designs, Codes and Cryptography, 2012, 64 : 275 - 283