1-perfect codes in Sierpinski graphs

被引:72
|
作者
Klavzar, S
Milutinovic, U
Petr, C
机构
[1] Univ Maribor, Dept Math, PeF, SLO-2000 Maribor, Slovenia
[2] Iskratel Telecommun Syst Ltd, Maribor 2000, Slovenia
关键词
D O I
10.1017/S0004972700040235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sierpinski graphs S(n,k) generalise the Tower of Hanoi graphs-the graph S(n,3) is isomorphic to the graph H-n of the Tower of Hanoi with n disks. A 1-perfect code (or an efficient dominating set) in a graph G is a vertex subset of G with the property that the closed neighbourhoods of its elements form a partition of V(G). It is proved that the graphs S(n, k) possess unique 1-perfect codes, thus extending a previously known result for H-n. An efficient decoding algorithm is also presented. The present approach, in particular the proposed (de)coding, is intrinsically different from the approach to H-n.
引用
收藏
页码:369 / 384
页数:16
相关论文
共 50 条
  • [41] Subgroup perfect codes in cayley graphs
    Ma, Xuanlong
    Walls, Gary L.
    Wang, Kaishun
    Zhou, Sanming
    [J]. arXiv, 2019,
  • [42] Total perfect codes in Cayley graphs
    Zhou, Sanming
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2016, 81 (03) : 489 - 504
  • [43] Additive perfect codes in Doob graphs
    Shi, Minjia
    Huang, Daitao
    Krotov, Denis S.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (08) : 1857 - 1869
  • [44] On the subgroup perfect codes in Cayley graphs
    Yasamin Khaefi
    Zeinab Akhlaghi
    Behrooz Khosravi
    [J]. Designs, Codes and Cryptography, 2023, 91 : 55 - 61
  • [45] Total perfect codes in Cayley graphs
    Sanming Zhou
    [J]. Designs, Codes and Cryptography, 2016, 81 : 489 - 504
  • [46] SUBGROUP PERFECT CODES IN CAYLEY GRAPHS
    Ma, Xuanlong
    Walls, Gary L.
    Wang, Kaishun
    Zhou, Sanming
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (03) : 1909 - 1921
  • [47] On the subgroup perfect codes in Cayley graphs
    Khaefi, Yasamin
    Akhlaghi, Zeinab
    Khosravi, Behrooz
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (01) : 55 - 61
  • [48] On perfect codes in Cartesian products of graphs
    Mollard, Michel
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (03) : 398 - 403
  • [49] Additive perfect codes in Doob graphs
    Minjia Shi
    Daitao Huang
    Denis S. Krotov
    [J]. Designs, Codes and Cryptography, 2019, 87 : 1857 - 1869
  • [50] On subgroup perfect codes in Cayley graphs
    Zhang, Junyang
    Zhou, Sanming
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2021, 91