Additive perfect codes in Doob graphs

被引:1
|
作者
Minjia Shi
Daitao Huang
Denis S. Krotov
机构
[1] Anhui University,School of Mathematical Sciences
[2] Sobolev Institute of Mathematics,undefined
来源
关键词
Distance regular graphs; Additive perfect codes; Doob graphs; Quasi-cyclic codes; Tight 2-designs; 94B05; 94B25; 05B40;
D O I
暂无
中图分类号
学科分类号
摘要
The Doob graph D(m, n) is the Cartesian product of m>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>0$$\end{document} copies of the Shrikhande graph and n copies of the complete graph of order 4. Naturally, D(m, n) can be represented as a Cayley graph on the additive group (Z42)m×(Z22)n′×Z4n′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Z_4^2)^m \times (Z_2^2)^{n'} \times Z_4^{n''}$$\end{document}, where n′+n′′=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n'+n''=n$$\end{document}. A set of vertices of D(m, n) is called an additive code if it forms a subgroup of this group. We construct a 3-parameter class of additive perfect codes in Doob graphs and show that the known necessary conditions of the existence of additive 1-perfect codes in D(m,n′+n′′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(m,n'+n'')$$\end{document} are sufficient. Additionally, two quasi-cyclic additive 1-perfect codes are constructed in D(155,0+31)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(155,0+31)$$\end{document} and D(2667,0+127)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(2667,0+127)$$\end{document}.
引用
收藏
页码:1857 / 1869
页数:12
相关论文
共 50 条
  • [1] Additive perfect codes in Doob graphs
    Shi, Minjia
    Huang, Daitao
    Krotov, Denis S.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (08) : 1857 - 1869
  • [2] Perfect codes in Doob graphs
    Denis S. Krotov
    [J]. Designs, Codes and Cryptography, 2016, 80 : 91 - 102
  • [3] Perfect codes in Doob graphs
    Krotov, Denis S.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2016, 80 (01) : 91 - 102
  • [4] The Existence of Perfect Codes in Doob Graphs
    Krotov, Denis S.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (03) : 1423 - 1427
  • [5] MDS codes in Doob graphs
    E. A. Bespalov
    D. S. Krotov
    [J]. Problems of Information Transmission, 2017, 53 : 136 - 154
  • [6] MDS Codes in Doob Graphs
    Bespalov, E. A.
    Krotov, D. S.
    [J]. PROBLEMS OF INFORMATION TRANSMISSION, 2017, 53 (02) : 136 - 154
  • [7] Tight 2-designs and perfect 1-codes in Doob graphs
    Koolen, JH
    Munemasa, A
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 86 (02) : 505 - 513
  • [8] Quasi-Cyclic Perfect Codes in Doob Graphs and Special Partitions of Galois Rings
    Shi, Minjia
    Li, Xiaoxiao
    Krotov, Denis S.
    Ozbudak, Ferruh
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (09) : 5597 - 5603
  • [9] Erratum to: “MDS codes in Doob graphs”
    E. A. Bespalov
    D. S. Krotov
    [J]. Problems of Information Transmission, 2017, 53 (3) : 306 - 306
  • [10] Perfect codes in additive channels
    V. K. Leont’ev
    G. L. Movsisyan
    Zh. G. Margaryan
    [J]. Doklady Mathematics, 2006, 74 : 831 - 833