Security in Sierpinski graphs

被引:2
|
作者
Menon, Manju K. [1 ]
Chithra, M. R. [2 ]
Savitha, K. S. [1 ]
机构
[1] St Pauls Coll, Dept Math, Kalamassery 683503, India
[2] Univ Kerala, Dept Math, Thiruvananthapuram 695581, Kerala, India
关键词
Sierpinski graphs; Secure sets; Secure dominating sets;
D O I
10.1016/j.dam.2022.11.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A secure set S subset of V of a graph G = (V, E) is a set whose every nonempty subset can be successfully defended from an attack, under appropriate definitions of 'attack' and 'defense'. The set S is secure when vertical bar N[X]boolean AND S vertical bar >= vertical bar N[X] - S vertical bar for every X subset of S. A set S subset of V is secure dominating if it is both secure and dominating. The minimum cardinality of a secure set in G is the security number of G, s(G), and the minimum cardinality of a secure-dominating set in G is the secure domination number of G, gamma(s)(G). In this paper, we initiate a study of these parameters in the well-known Sierpinski graphs. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:10 / 15
页数:6
相关论文
共 50 条
  • [21] Total coloring of generalized Sierpinski graphs
    Geetha, J.
    Somasundaram, K.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2015, 63 : 58 - 69
  • [22] The Tutte polynomial of the Sierpinski and Hanoi graphs
    Donno, Alfredo
    Iacono, Donatella
    ADVANCES IN GEOMETRY, 2013, 13 (04) : 663 - 694
  • [23] Uniform spanning trees on Sierpinski graphs
    Shinoda, Masato
    Teufl, Elmar
    Wagner, Stephan
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 11 (02): : 737 - 780
  • [24] DIVISIBLE SANDPILE ON SIERPINSKI GASKET GRAPHS
    Huss, Wilfried
    Sava-huss, Ecaterina
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (03)
  • [25] Packing coloring of generalized Sierpinski ´ graphs
    Korže, Danilo
    Vesel, Aleksander
    Discrete Mathematics and Theoretical Computer Science, 2019, 21 (03):
  • [26] Packing coloring of generalized Sierpinski graphs
    Korze, Danilo
    Vesel, Aleksander
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (03):
  • [27] Isomorphism Classification of Infinite Sierpinski Carpet Graphs
    D'Angeli, Daniele
    Donno, Alfredo
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [28] Metric compactification of infinite Sierpinski carpet graphs
    D'Angeli, Daniele
    Donno, Alfredo
    DISCRETE MATHEMATICS, 2016, 339 (11) : 2693 - 2705
  • [29] Resolvability and Convexity Properties in the Sierpinski Product of Graphs
    Henning, Michael A.
    Klavzar, Sandi
    Yero, Ismael G.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (01)
  • [30] On the Roman Domination Number of Generalized Sierpinski Graphs
    Ramezani, F.
    Rodriguez-Bazan, E. D.
    Rodriguez-Velazquez, J. A.
    FILOMAT, 2017, 31 (20) : 6515 - 6528