Gradient Descent and Twice Differentiable Simpson-Type Inequalities via K-Riemann-Liouville Fractional Operators in Function Spaces

被引:0
|
作者
Afzal, Waqar [1 ]
Abbas, Mujahid [2 ,3 ]
Macias-Diaz, Jorge E. [4 ,5 ]
Meetei, Mutum Zico [6 ]
Khan, Mehreen S. [7 ]
Gallegos, Armando [8 ]
机构
[1] Govt Coll Univ, Abdus Salam Sch Math Sci, 68-B New Muslim Town, Lahore 54600, Pakistan
[2] Univ Johannesburg, Fac Engn & Built Environm, Dept Mech Engn Sci, Doornfontein Campus, Johannesburg, South Africa
[3] China Med Univ, Dept Med Res, Taichung 406040, Taiwan
[4] Tallinn Univ, Dept Math & Didact Math, EE-10120 Tallinn, Estonia
[5] Autonomous Univ Aguascalientes, Dept Math & Phys, Aguascalientes 20100, Mexico
[6] Jazan Univ, Coll Sci, Dept Math, POB 114, Jazan 45142, Saudi Arabia
[7] Jazan Univ, Fac Sci, Dept Math, Jazan 45142, Saudi Arabia
[8] Univ Guadalajara, Univ Ctr Los Lagos, Guadalajara 47460, Jalisco, Mexico
来源
关键词
Simpson; Hilbert spaces; generalized convex mappings; INTERVAL-ORDER RELATIONS; INTEGRAL-OPERATORS; MAPPINGS;
D O I
10.29020/nybg.ejpam.v18i1.5790
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates novel properties of Hilbert spaces through tensor operations and establishes new bounds for Simpson-type inequalities using fractional integral operators. The results contribute to advancing the theoretical understanding of these mathematical structures and their applications in functional analysis and related fields.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Estimation-type results on the k-fractional Simpson-type integral inequalities and applications
    Nie, Jialu
    Liu, Jun
    Zhang, Jiafeng
    Du, Tingsong
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 932 - 940
  • [22] Generalized Simpson Type Inequalities Involving Riemann-Liouville Fractional Integrals and Their Applications
    Luo, Chunyan
    Du, Tingsong
    FILOMAT, 2020, 34 (03) : 751 - 760
  • [23] Riemann-Liouville Fractional Newton's Type Inequalities for Differentiable Convex Functions
    Sitthiwirattham, Thanin
    Nonlaopon, Kamsing
    Ali, Muhammad Aamir
    Budak, Huseyin
    FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [24] On some Newton's type inequalities for differentiable convex functions via Riemann-Liouville fractional integrals
    Ali, Muhammad Aamir
    Budak, Huseyin
    Feckan, Michal
    Patanarapeelert, Nichaphat
    Sitthiwirattham, Thanin
    FILOMAT, 2023, 37 (11) : 3427 - 3441
  • [25] Some integral inequalities for (k, s) - Riemann-Liouville fractional operators
    Houas, Mohamed
    Dahmani, Zoubir
    Sarikaya, Mehmet Zeki
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (7-8) : 1575 - 1585
  • [26] The Minkowski's inequalities via Ω-Riemann-Liouville fractional integral operators
    Aljaaidi, Tariq A.
    Pachpatte, Deepak B.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (02) : 893 - 906
  • [27] Some new k-Riemann-Liouville fractional integral inequalities associated with the strongly η-quasiconvex functions with modulus μ ≥ 0
    Nwaeze, Eze R.
    Kermausuor, Seth
    Tameru, Ana M.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [28] Simpson Type Integral Inequalities for Convex Functions via Riemann-Liouville Integrals
    Set, Erhan
    Akdemir, Ahmet Ocak
    Ozdemir, M. Emin
    FILOMAT, 2017, 31 (14) : 4415 - 4420
  • [29] Further Midpoint Inequalities via Generalized Fractional Operators in Riemann-Liouville Sense
    Hyder, Abd-Allah
    Budak, Huseyin
    Almoneef, Areej A.
    FRACTAL AND FRACTIONAL, 2022, 6 (09)
  • [30] HARDY-TYPE INEQUALITIES FOR AN EXTENSION OF THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATORS
    Iqbal, Sajid
    Farid, Ghulam
    Pecaric, Josip
    Kashuri, Artion
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (05): : 797 - 813