Gradient Descent and Twice Differentiable Simpson-Type Inequalities via K-Riemann-Liouville Fractional Operators in Function Spaces

被引:0
|
作者
Afzal, Waqar [1 ]
Abbas, Mujahid [2 ,3 ]
Macias-Diaz, Jorge E. [4 ,5 ]
Meetei, Mutum Zico [6 ]
Khan, Mehreen S. [7 ]
Gallegos, Armando [8 ]
机构
[1] Govt Coll Univ, Abdus Salam Sch Math Sci, 68-B New Muslim Town, Lahore 54600, Pakistan
[2] Univ Johannesburg, Fac Engn & Built Environm, Dept Mech Engn Sci, Doornfontein Campus, Johannesburg, South Africa
[3] China Med Univ, Dept Med Res, Taichung 406040, Taiwan
[4] Tallinn Univ, Dept Math & Didact Math, EE-10120 Tallinn, Estonia
[5] Autonomous Univ Aguascalientes, Dept Math & Phys, Aguascalientes 20100, Mexico
[6] Jazan Univ, Coll Sci, Dept Math, POB 114, Jazan 45142, Saudi Arabia
[7] Jazan Univ, Fac Sci, Dept Math, Jazan 45142, Saudi Arabia
[8] Univ Guadalajara, Univ Ctr Los Lagos, Guadalajara 47460, Jalisco, Mexico
来源
关键词
Simpson; Hilbert spaces; generalized convex mappings; INTERVAL-ORDER RELATIONS; INTEGRAL-OPERATORS; MAPPINGS;
D O I
10.29020/nybg.ejpam.v18i1.5790
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates novel properties of Hilbert spaces through tensor operations and establishes new bounds for Simpson-type inequalities using fractional integral operators. The results contribute to advancing the theoretical understanding of these mathematical structures and their applications in functional analysis and related fields.
引用
收藏
页数:30
相关论文
共 50 条
  • [11] On corrected Simpson-type inequalities via local fractional integrals
    Lakhdari, Abdelghani
    Meftah, Badreddine
    Saleh, Wedad
    GEORGIAN MATHEMATICAL JOURNAL, 2025, 32 (01) : 111 - 121
  • [12] Ostrowski type inequalities for functions whose derivatives are strongly (α, m)-convex via k-Riemann-Liouville fractional integrals
    Kermausuor, Seth
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (01): : 25 - 34
  • [13] Fractional dual Simpson-type inequalities for differentiable s-convex functions
    Kamouche, Nesrine
    Ghomrani, Sarra
    Meftah, Badreddine
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (02): : 75 - 84
  • [14] New version of fractional Simpson type inequalities for twice differentiable functions
    Fatih Hezenci
    Hüseyin Budak
    Hasan Kara
    Advances in Difference Equations, 2021
  • [15] New version of fractional Simpson type inequalities for twice differentiable functions
    Hezenci, Fatih
    Budak, Huseyin
    Kara, Hasan
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [16] Simpson Type Inequalities for Twice-differentiable Functions Arising from Tempered Fractional Integral Operators
    Cai, Jieyin
    Wang, Bin
    Du, Tingsong
    IAENG International Journal of Applied Mathematics, 2024, 54 (05) : 831 - 839
  • [17] Inequalities with parameters for twice-differentiable functions involving Riemann-Liouville fractional integrals
    Hezenci, Fatih
    FILOMAT, 2024, 38 (09) : 3275 - 3294
  • [18] Some New Simpson's-Formula-Type Inequalities for Twice-Differentiable Convex Functions via Generalized Fractional Operators
    Ali, Muhammad Aamir
    Kara, Hasan
    Tariboon, Jessada
    Asawasamrit, Suphawat
    Budak, Huseyin
    Hezenci, Fatih
    SYMMETRY-BASEL, 2021, 13 (12):
  • [19] Some New Refinements of Hermite-Hadamard-Type Inequalities Involving ψk-Riemann-Liouville Fractional Integrals and Applications
    Awan, Muhammad Uzair
    Talib, Sadia
    Chu Yu-Ming
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [20] Generalized inequalities involving fractional operators of the Riemann-Liouville type
    Bosch, Paul
    Carmenate, Hector J.
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    AIMS MATHEMATICS, 2022, 7 (01): : 1470 - 1485