Gradient Descent and Twice Differentiable Simpson-Type Inequalities via K-Riemann-Liouville Fractional Operators in Function Spaces

被引:0
|
作者
Afzal, Waqar [1 ]
Abbas, Mujahid [2 ,3 ]
Macias-Diaz, Jorge E. [4 ,5 ]
Meetei, Mutum Zico [6 ]
Khan, Mehreen S. [7 ]
Gallegos, Armando [8 ]
机构
[1] Govt Coll Univ, Abdus Salam Sch Math Sci, 68-B New Muslim Town, Lahore 54600, Pakistan
[2] Univ Johannesburg, Fac Engn & Built Environm, Dept Mech Engn Sci, Doornfontein Campus, Johannesburg, South Africa
[3] China Med Univ, Dept Med Res, Taichung 406040, Taiwan
[4] Tallinn Univ, Dept Math & Didact Math, EE-10120 Tallinn, Estonia
[5] Autonomous Univ Aguascalientes, Dept Math & Phys, Aguascalientes 20100, Mexico
[6] Jazan Univ, Coll Sci, Dept Math, POB 114, Jazan 45142, Saudi Arabia
[7] Jazan Univ, Fac Sci, Dept Math, Jazan 45142, Saudi Arabia
[8] Univ Guadalajara, Univ Ctr Los Lagos, Guadalajara 47460, Jalisco, Mexico
来源
关键词
Simpson; Hilbert spaces; generalized convex mappings; INTERVAL-ORDER RELATIONS; INTEGRAL-OPERATORS; MAPPINGS;
D O I
10.29020/nybg.ejpam.v18i1.5790
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates novel properties of Hilbert spaces through tensor operations and establishes new bounds for Simpson-type inequalities using fractional integral operators. The results contribute to advancing the theoretical understanding of these mathematical structures and their applications in functional analysis and related fields.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] Midpoint-type inequalities via twice-differentiable functions on tempered fractional integrals
    Fatih Hezenci
    Hüseyin Budak
    Journal of Inequalities and Applications, 2023
  • [42] Midpoint-type inequalities via twice-differentiable functions on tempered fractional integrals
    Hezenci, Fatih
    Budak, Huseyin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [43] Gruss type integral inequalities for generalized Riemann-Liouville k-fractional integrals
    Mubeen, Shahid
    Iqbal, Sana
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [44] HERMITE-HADAMARD TYPE INEQUALITIES OBTAINED VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS
    Mihai, M. V.
    Mitroi, F-C.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2014, 83 (02): : 209 - 215
  • [45] NEW INTEGRAL INEQUALITIES OF FENG QI TYPE VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRATION
    Anber, Ahmed
    Dahmani, Zoubir
    Bendoukha, Berrabah
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2012, 27 (02): : 157 - 166
  • [46] SOME HERMITE-HADAMARD TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS
    Mihai, Marcela V.
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (04): : 411 - 416
  • [47] SOME HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR TWICE DIFFERENTIABLE MAPPINGS VIA FRACTIONAL INTEGRALS
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2014, 29 (04): : 371 - 384
  • [48] New Inequalities of Bullen-type for Twice-Differentiable Functions via Conformable Fractional Integrals
    Fatih Hezenci
    Hüseyin Budak
    International Journal of Applied and Computational Mathematics, 2024, 10 (6)
  • [49] New Variant of Hermite-Jensen-Mercer Inequalities via Riemann-Liouville Fractional Integral Operators
    Kang, Qiong
    Butt, Saad Ihsan
    Nazeer, Waqas
    Nadeem, Mehroz
    Nasir, Jamshed
    Yang, Hong
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [50] Fractional Sobolev type spaces of functions of two variables via Riemann-Liouville derivatives
    Idczak, Dariusz
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (06) : 2892 - 2947