Further Midpoint Inequalities via Generalized Fractional Operators in Riemann-Liouville Sense

被引:7
|
作者
Hyder, Abd-Allah [1 ,2 ]
Budak, Huseyin [3 ]
Almoneef, Areej A. [4 ]
机构
[1] King Khalid Univ, Coll Sci, Dept Math, POB 9004, Abha 61413, Saudi Arabia
[2] Al Azhar Univ, Fac Engn, Dept Engn Math & Phys, Cairo 71524, Egypt
[3] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkey
[4] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
关键词
generalized fractional operators; midpoint inequalities; Hermite-Hadamard inequality; HERMITE-HADAMARD-TYPE;
D O I
10.3390/fractalfract6090496
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, new midpoint-type inequalities are given through recently generalized Riemann-Liouville fractional integrals. Foremost, we present an identity for a class of differentiable functions including the proposed fractional integrals. Then, several midpoint-type inequalities containing generalized Riemann-Liouville fractional integrals are proved by employing the features of convex and concave functions. Furthermore, all obtained results in this study can be compared to previously published results.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] SEVERAL INTEGRAL INEQUALITIES FOR GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL OPERATORS
    Galeano Delgado, Juan Gabriel
    Napoles Valdes, Juan E.
    Perez Reyes, Edgardo
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (01): : 269 - 278
  • [2] Generalized inequalities involving fractional operators of the Riemann-Liouville type
    Bosch, Paul
    Carmenate, Hector J.
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 1470 - 1485
  • [3] New integral inequalities involving generalized Riemann-Liouville fractional operators
    Delgado, Juan Gabriel Galeano
    Valdes, Juan E. Napoles
    Reyes, Edgardo Perez
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (03): : 481 - 487
  • [4] The Minkowski's inequalities via Ω-Riemann-Liouville fractional integral operators
    Aljaaidi, Tariq A.
    Pachpatte, Deepak B.
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (02) : 893 - 906
  • [5] On Hadamard Type Fractional Inequalities for Riemann-Liouville Integrals via a Generalized Convexity
    Yan, Tao
    Farid, Ghulam
    Yasmeen, Hafsa
    Jung, Chahn Yong
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [6] On New Inequalities via Riemann-Liouville Fractional Integration
    Sarikaya, Mehmet Zeki
    Ogunmez, Hasan
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [7] Some inequalities via ψ-Riemann-Liouville fractional integrals
    Mehreen, Naila
    Anwar, Matloob
    [J]. AIMS MATHEMATICS, 2019, 4 (05): : 1403 - 1415
  • [8] Random inequalities via Riemann-Liouville fractional integration
    Bezziou, Mohamed
    Dahmani, Zoubir
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (04) : 941 - 950
  • [9] New Versions of Midpoint Inequalities Based on Extended Riemann-Liouville Fractional Integrals
    Hyder, Abd-Allah
    Budak, Hueseyin
    Barakat, Mohamed A.
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [10] Weighted Ostrowski, trapezoid and midpoint type inequalities for Riemann-Liouville fractional integrals
    Budak, Huseyin
    Pehlivan, Ebru
    [J]. AIMS MATHEMATICS, 2020, 5 (03): : 1960 - 1984