Benchmarking Quantum Circuit Transformation With QKNOB Circuits

被引:0
|
作者
Li, Sanjiang [1 ]
Zhou, Xiangzhen [2 ]
Feng, Yuan [3 ]
机构
[1] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Software & Informat, Ultimo, NSW 2007, Australia
[2] Nanjing Tech Univ, Nanjing 210037, Peoples R China
[3] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100190, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Logic gates; Qubit; Quantum circuit; Benchmark testing; Performance evaluation; Costs; Approximation algorithms; Quantum mechanics; Transforms; Scalability; Architecture; hardware/software co-design; performance optimization; placement; routing; ISOMORPHISM;
D O I
10.1109/TQE.2025.3527399
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Current superconducting quantum devices impose strict connectivity constraints on quantum circuit execution, necessitating circuit transformation before executing quantum circuits on physical hardware. Numerous quantum circuit transformation (QCT) algorithms have been proposed. To enable faithful evaluation of state-of-the-art QCT algorithms, this article introduces qubit mapping benchmark with known near-optimality (QKNOB), a novel benchmark construction method for QCT. QKNOB circuits have built-in transformations with near-optimal (close to the theoretical optimum) swap count and depth overhead. QKNOB provides general and unbiased evaluation of QCT algorithms. Using QKNOB, we demonstrate that SABRE, the default Qiskit compiler, consistently achieves the best performance on the 53-qubit IBM Q Rochester and Google Sycamore devices for both swap count and depth objectives. Our results also reveal significant performance gaps relative to the near-optimal transformation costs of QKNOB. Our construction algorithm and benchmarks are open-source.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Nearest Neighbor Transformation of Quantum Circuits in 2D Architecture
    Cheng, Xueyun
    Guan, Zhijin
    Zhu, Pengcheng
    IEEE ACCESS, 2020, 8 (08): : 222466 - 222475
  • [42] A complete set of transformation rules for quantum Boolean circuits with CNOT gates
    Iwama, K
    Yamashita, S
    SUPERLATTICES AND MICROSTRUCTURES, 2002, 31 (2-4) : 181 - 192
  • [43] Interaction between Microwave and Mesoscopic Circuits in Cavity-circuit Quantum Electrodynamics
    Chong, Shi Yao
    Wang, Zhuoyuan
    An, Peng
    Cheng, Peihong
    Shen, Jian Qi
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 3789 - 3796
  • [44] Transformation Circuits
    Grbic, A.
    Gok, G.
    PROCEEDINGS OF THE FOURTH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, 2010,
  • [45] Benchmarking of quantum protocols
    Chin-Te Liao
    Sima Bahrani
    Francisco Ferreira da Silva
    Elham Kashefi
    Scientific Reports, 12
  • [46] Benchmarking of quantum protocols
    Liao, Chin-Te
    Bahrani, Sima
    da Silva, Francisco Ferreira
    Kashefi, Elham
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [47] Quantum tomography benchmarking
    B. I. Bantysh
    A. Yu. Chernyavskiy
    Yu. I. Bogdanov
    Quantum Information Processing, 2021, 20
  • [48] Quantum certification and benchmarking
    Jens Eisert
    Dominik Hangleiter
    Nathan Walk
    Ingo Roth
    Damian Markham
    Rhea Parekh
    Ulysse Chabaud
    Elham Kashefi
    Nature Reviews Physics, 2020, 2 : 382 - 390
  • [49] Benchmarking quantum computers
    Proctor, Timothy
    Young, Kevin
    Baczewski, Andrew D.
    Blume-Kohout, Robin
    NATURE REVIEWS PHYSICS, 2025, 7 (02) : 105 - 118
  • [50] Quantum tomography benchmarking
    Bantysh, B., I
    Chernyavskiy, A. Yu
    Bogdanov, Yu, I
    QUANTUM INFORMATION PROCESSING, 2021, 20 (10)