Benchmarking quantum computers

被引:0
|
作者
Proctor, Timothy [1 ]
Young, Kevin [1 ]
Baczewski, Andrew D. [2 ]
Blume-Kohout, Robin [3 ]
机构
[1] Sandia Natl Labs, Quantum Performance Lab, Livermore, CA 94550 USA
[2] Sandia Natl Labs, Quantum Algorithms & Applicat Collaboratory, Albuquerque, NM USA
[3] Sandia Natl Labs, Quantum Performance Lab, Albuquerque, NM USA
关键词
IMPLEMENTATION; COMPUTATION; ALGORITHMS; SUPREMACY; STATE;
D O I
10.1038/s42254-024-00796-z
中图分类号
O59 [应用物理学];
学科分类号
摘要
The rapid pace of development in quantum computing technology has sparked a proliferation of benchmarks to assess the performance of quantum computing hardware and software. However, not all benchmarks are of equal merit. Good ones empower scientists, engineers, programmers and users to understand the power of a computing system, whereas bad ones can misdirect research and inhibit progress. In this Perspective, we survey the science of quantum computer benchmarking. We discuss the role of benchmarks and benchmarking and how good benchmarks can drive and measure progress towards the long-term goal of useful quantum computations, known as quantum utility. We explain how different kinds of benchmark quantify the performance of different parts of a quantum computer, discuss existing benchmarks, examine recent trends in benchmarking, and highlight important open research questions in this field.
引用
收藏
页码:105 / 118
页数:14
相关论文
共 50 条
  • [1] Benchmarking Quantum Computers and the Impact of Quantum Noise
    Resch, Salonik
    Karpuzcu, Ulya R.
    ACM COMPUTING SURVEYS, 2021, 54 (07)
  • [2] Benchmarking gate-based quantum computers
    Michielsen, Kristel
    Nocon, Madita
    Willsch, Dennis
    Jin, Fengping
    Lippert, Thomas
    De Raedt, Hans
    COMPUTER PHYSICS COMMUNICATIONS, 2017, 220 : 44 - 55
  • [3] Benchmarking Quantum Computers: A Challenging but Necessary Step Towards Future
    Savvas, Ilias K.
    Galanis, Ilias
    ERCIM NEWS, 2022, (128): : 24 - 25
  • [4] Scalable Randomized Benchmarking of Quantum Computers Using Mirror Circuits
    Proctor, Timothy
    Seritan, Stefan
    Rudinger, Kenneth
    Nielsen, Erik
    Blume-Kohout, Robin
    Young, Kevin
    PHYSICAL REVIEW LETTERS, 2022, 129 (15)
  • [5] Characterizing large-scale quantum computers via cycle benchmarking
    Erhard, Alexander
    Wallman, Joel J.
    Postler, Lukas
    Meth, Michael
    Stricker, Roman
    Martinez, Esteban A.
    Schindler, Philipp
    Monz, Thomas
    Emerson, Joseph
    Blatt, Rainer
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [6] Characterizing large-scale quantum computers via cycle benchmarking
    Alexander Erhard
    Joel J. Wallman
    Lukas Postler
    Michael Meth
    Roman Stricker
    Esteban A. Martinez
    Philipp Schindler
    Thomas Monz
    Joseph Emerson
    Rainer Blatt
    Nature Communications, 10
  • [7] Benchmarking quantum computers: The five-qubit error correcting code
    Knill, E
    Laflamme, R
    Martinez, R
    Negrevergne, C
    PHYSICAL REVIEW LETTERS, 2001, 86 (25) : 5811 - 5814
  • [8] Quantum Poker—a game for quantum computers suitable for benchmarking error mitigation techniques on NISQ devices
    Franz G. Fuchs
    Vemund Falch
    Christian Johnsen
    The European Physical Journal Plus, 135
  • [9] PyQBench: A Python']Python library for benchmarking gate-based quantum computers
    Jalowiecki, Konrad
    Lewandowska, Paulina
    Pawela, Lukasz
    SOFTWAREX, 2023, 24
  • [10] Quantum Poker-a game for quantum computers suitable for benchmarking error mitigation techniques on NISQ devices
    Fuchs, Franz G.
    Falch, Vemund
    Johnsen, Christian
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (04):