Characterizing large-scale quantum computers via cycle benchmarking

被引:170
|
作者
Erhard, Alexander [1 ]
Wallman, Joel J. [2 ,3 ,4 ]
Postler, Lukas [1 ]
Meth, Michael [1 ]
Stricker, Roman [1 ]
Martinez, Esteban A. [1 ,5 ]
Schindler, Philipp [1 ]
Monz, Thomas [1 ,6 ]
Emerson, Joseph [2 ,3 ,4 ]
Blatt, Rainer [1 ,7 ]
机构
[1] Univ Innsbruck, Inst Expt Phys, A-6020 Innsbruck, Austria
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON, Canada
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON, Canada
[4] Quantum Benchmark Inc, Kitchener, ON N2H 4C3, Canada
[5] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[6] Alpine Quantum Technol GmbH, A-6020 Innsbruck, Austria
[7] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
基金
奥地利科学基金会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1038/s41467-019-13068-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computers promise to solve certain problems more efficiently than their digital counterparts. A major challenge towards practically useful quantum computing is characterizing and reducing the various errors that accumulate during an algorithm running on large-scale processors. Current characterization techniques are unable to adequately account for the exponentially large set of potential errors, including cross-talk and other correlated noise sources. Here we develop cycle benchmarking, a rigorous and practically scalable protocol for characterizing local and global errors across multi-qubit quantum processors. We experimentally demonstrate its practicality by quantifying such errors in non-entangling and entangling operations on an ion-trap quantum computer with up to 10 qubits, and total process fidelities for multi-qubit entangling gates ranging from 99.6(1)% for 2 qubits to 86(2)% for 10 qubits. Furthermore, cycle benchmarking data validates that the error rate per single-qubit gate and per two-qubit coupling does not increase with increasing system size.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Characterizing large-scale quantum computers via cycle benchmarking
    Alexander Erhard
    Joel J. Wallman
    Lukas Postler
    Michael Meth
    Roman Stricker
    Esteban A. Martinez
    Philipp Schindler
    Thomas Monz
    Joseph Emerson
    Rainer Blatt
    [J]. Nature Communications, 10
  • [2] Classical Control of Large-Scale Quantum Computers
    Devitt, Simon J.
    [J]. REVERSIBLE COMPUTATION, RC 2014, 2014, 8507 : 26 - 39
  • [3] Large-scale quantum computers one step closer
    Sparkes, Matthew
    [J]. NEW SCIENTIST, 2021, 245 (3344) : 16 - 16
  • [4] LARGE-SCALE COMPUTERS
    SNYDER, RL
    [J]. PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1948, 36 (03): : 377 - 377
  • [5] Decoherence rates in large-scale quantum computers and macroscopic quantum systems
    Dalton, BJ
    [J]. JOURNAL OF MODERN OPTICS, 2005, 52 (17) : 2563 - 2587
  • [6] Cryo-CMOS Interfaces for Large-Scale Quantum Computers
    Sebastiano, F.
    van Dijk, J. P. G.
    A 't Hart, P.
    Patra, B.
    van Staveren, J.
    Xue, X.
    Almudever, C. G.
    Scappucci, G.
    Veldhorst, M.
    Vandersypen, L. M. K.
    Vladimirescu, A.
    Pellerano, S.
    Babaie, M.
    Charbon, E.
    [J]. 2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2020,
  • [7] Cryo-CMOS Interfaces for Large-Scale Quantum Computers
    Sebastiano, Fabio
    [J]. 2021 INTERNATIONAL SYMPOSIUM ON VLSI TECHNOLOGY, SYSTEMS AND APPLICATIONS (VLSI-TSA), 2021,
  • [8] Characterizing quantum gates via randomized benchmarking
    Magesan, Easwar
    Gambetta, Jay M.
    Emerson, Joseph
    [J]. PHYSICAL REVIEW A, 2012, 85 (04):
  • [9] SPARKBENCH: a spark benchmarking suite characterizing large-scale in-memory data analytics
    Li, Min
    Tan, Jian
    Wang, Yandong
    Zhang, Li
    Salapura, Valentina
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2017, 20 (03): : 2575 - 2589
  • [10] SparkBench: a spark benchmarking suite characterizing large-scale in-memory data analytics
    Min Li
    Jian Tan
    Yandong Wang
    Li Zhang
    Valentina Salapura
    [J]. Cluster Computing, 2017, 20 : 2575 - 2589