Benchmarking Quantum Circuit Transformation With QKNOB Circuits

被引:0
|
作者
Li, Sanjiang [1 ]
Zhou, Xiangzhen [2 ]
Feng, Yuan [3 ]
机构
[1] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Software & Informat, Ultimo, NSW 2007, Australia
[2] Nanjing Tech Univ, Nanjing 210037, Peoples R China
[3] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100190, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Logic gates; Qubit; Quantum circuit; Benchmark testing; Performance evaluation; Costs; Approximation algorithms; Quantum mechanics; Transforms; Scalability; Architecture; hardware/software co-design; performance optimization; placement; routing; ISOMORPHISM;
D O I
10.1109/TQE.2025.3527399
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Current superconducting quantum devices impose strict connectivity constraints on quantum circuit execution, necessitating circuit transformation before executing quantum circuits on physical hardware. Numerous quantum circuit transformation (QCT) algorithms have been proposed. To enable faithful evaluation of state-of-the-art QCT algorithms, this article introduces qubit mapping benchmark with known near-optimality (QKNOB), a novel benchmark construction method for QCT. QKNOB circuits have built-in transformations with near-optimal (close to the theoretical optimum) swap count and depth overhead. QKNOB provides general and unbiased evaluation of QCT algorithms. Using QKNOB, we demonstrate that SABRE, the default Qiskit compiler, consistently achieves the best performance on the 53-qubit IBM Q Rochester and Google Sycamore devices for both swap count and depth objectives. Our results also reveal significant performance gaps relative to the near-optimal transformation costs of QKNOB. Our construction algorithm and benchmarks are open-source.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Benchmarking in digital circuit design
    Jozwiak, Lech
    NEW ASPECTS OF MICROELECTRONICS, NANOELECTRONICS, OPTOELECTRONICS, 2008, : 58 - 66
  • [32] A Monte Carlo Tree Search Framework for Quantum Circuit Transformation
    Zhou, Xiangzhen
    Feng, Yuan
    Li, Sanjiang
    2020 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED-DESIGN (ICCAD), 2020,
  • [33] Optimization of quantum circuit mapping using gate transformation and commutation
    Itoko, Toshinari
    Raymond, Rudy
    Imamichi, Takashi
    Matsuo, Atsushi
    INTEGRATION-THE VLSI JOURNAL, 2020, 70 : 43 - 50
  • [34] Combining SWAPs and Remote CNOT Gates for Quantum Circuit Transformation
    Niemann, Philipp
    Mueller, Luca
    Drechsler, Rolf
    2021 24TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD 2021), 2021, : 495 - 501
  • [35] Quantum Circuit Transformation: A Monte Carlo Tree Search Framework
    Zhou, Xiangzhen
    Feng, Yuan
    Li, Sanjiang
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2022, 27 (06)
  • [36] Quantum Circuit Transformation Based on Simulated Annealing and Heuristic Search
    Zhou, Xiangzhen
    Li, Sanjiang
    Feng, Yuan
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2020, 39 (12) : 4683 - 4694
  • [37] An Extension of Transformation-based Reversible and Quantum Circuit Synthesis
    Soeken, Mathias
    Dueck, Gerhard W.
    Rahman, Md. Mazder
    Miller, D. Michael
    2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 2290 - 2293
  • [38] A flexible high-performance simulator for verifying and benchmarking quantum circuits implemented on real hardware
    Villalonga, Benjamin
    Boixo, Sergio
    Nelson, Bron
    Henze, Christopher
    Rieffel, Eleanor
    Biswas, Rupak
    Mandra, Salvatore
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [39] A flexible high-performance simulator for verifying and benchmarking quantum circuits implemented on real hardware
    Benjamin Villalonga
    Sergio Boixo
    Bron Nelson
    Christopher Henze
    Eleanor Rieffel
    Rupak Biswas
    Salvatore Mandrà
    npj Quantum Information, 5
  • [40] Randomized benchmarking protocol for dynamic circuits
    Shirizly, Liran
    Govia, Luke C. G.
    Mckay, David C.
    PHYSICAL REVIEW A, 2025, 111 (01)