Benchmarking Quantum Circuit Transformation With QKNOB Circuits

被引:0
|
作者
Li, Sanjiang [1 ]
Zhou, Xiangzhen [2 ]
Feng, Yuan [3 ]
机构
[1] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Software & Informat, Ultimo, NSW 2007, Australia
[2] Nanjing Tech Univ, Nanjing 210037, Peoples R China
[3] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100190, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Logic gates; Qubit; Quantum circuit; Benchmark testing; Performance evaluation; Costs; Approximation algorithms; Quantum mechanics; Transforms; Scalability; Architecture; hardware/software co-design; performance optimization; placement; routing; ISOMORPHISM;
D O I
10.1109/TQE.2025.3527399
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Current superconducting quantum devices impose strict connectivity constraints on quantum circuit execution, necessitating circuit transformation before executing quantum circuits on physical hardware. Numerous quantum circuit transformation (QCT) algorithms have been proposed. To enable faithful evaluation of state-of-the-art QCT algorithms, this article introduces qubit mapping benchmark with known near-optimality (QKNOB), a novel benchmark construction method for QCT. QKNOB circuits have built-in transformations with near-optimal (close to the theoretical optimum) swap count and depth overhead. QKNOB provides general and unbiased evaluation of QCT algorithms. Using QKNOB, we demonstrate that SABRE, the default Qiskit compiler, consistently achieves the best performance on the 53-qubit IBM Q Rochester and Google Sycamore devices for both swap count and depth objectives. Our results also reveal significant performance gaps relative to the near-optimal transformation costs of QKNOB. Our construction algorithm and benchmarks are open-source.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Circuit transformation method from OTA-C circuits into CFA-based RC circuits
    Yang, Z
    IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 1999, 146 (02): : 99 - 100
  • [22] Circuit transformation method from OTA-C circuits into CFA-based RC circuits
    Hou, CL
    Wang, WY
    IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 1997, 144 (04): : 209 - 212
  • [23] Transformation rules for CNOT-based quantum circuits and their applications
    Kazuo Iwama
    Shigeru Yamashita
    New Generation Computing, 2003, 21 : 297 - 317
  • [24] Transformation rules for designing CNOT-based quantum circuits
    Iwama, K
    Kambayashi, Y
    Yamashita, S
    39TH DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 2002, 2002, : 419 - 424
  • [25] Transformation rules for CNOT-based quantum circuits and their applications
    Iwama, K
    Yamashita, S
    NEW GENERATION COMPUTING, 2003, 21 (04) : 297 - 317
  • [26] Considering nearest neighbor constraints of quantum circuits at the reversible circuit level
    Wille, Robert
    Lye, Aaron
    Drechsler, Rolf
    QUANTUM INFORMATION PROCESSING, 2014, 13 (02) : 185 - 199
  • [27] Shorter Stabilizer Circuits via Bruhat Decomposition and Quantum Circuit Transformations
    Maslov, Dmitri
    Roetteler, Martin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (07) : 4729 - 4738
  • [28] Considering nearest neighbor constraints of quantum circuits at the reversible circuit level
    Robert Wille
    Aaron Lye
    Rolf Drechsler
    Quantum Information Processing, 2014, 13 : 185 - 199
  • [29] Low depth virtual distillation of quantum circuits by deterministic circuit decomposition
    Karim, Akib
    Zhang, Shaobo
    Usman, Muhammad
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [30] Benchmarking for graph transformation
    Varró, G
    Schürr, A
    Varró, D
    2005 IEEE SYMPOSIUM ON VISUAL LANGUAGE AND HUMAN-CENTRIC COMPUTING, PROCEEDINGS, 2005, : 79 - 88