A complete set of transformation rules for quantum Boolean circuits with CNOT gates

被引:2
|
作者
Iwama, K
Yamashita, S
机构
[1] Japan Sci & Technol Corp, ERATO, JST, Kamigyo Ku, Kyoto 6020873, Japan
[2] Kyoto Univ, Sch Informat, Kyoto, Japan
[3] NTT Corp, Commun Sci Labs, Kyoto, Japan
关键词
quantum circuit; CNOT gate; local transformation rules;
D O I
10.1006/spmi.2002.1039
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
This paper gives a simple but nontrivial set of local transformation rules for CNOT-based quantum circuits. It is shown that this rule set is complete, namely for any two equivalent circuits, S-1 and S-2, there is a sequence of transformations, each of them in the rule set, which changes S-1 to S-2. This rule set can be used for incremental circuit optimization methods like the classical circuit design methodology. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:181 / 192
页数:12
相关论文
共 50 条
  • [1] Transformation rules for CNOT-based quantum circuits and their applications
    Kazuo Iwama
    Shigeru Yamashita
    New Generation Computing, 2003, 21 : 297 - 317
  • [2] Transformation rules for designing CNOT-based quantum circuits
    Iwama, K
    Kambayashi, Y
    Yamashita, S
    39TH DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 2002, 2002, : 419 - 424
  • [3] Transformation rules for CNOT-based quantum circuits and their applications
    Iwama, K
    Yamashita, S
    NEW GENERATION COMPUTING, 2003, 21 (04) : 297 - 317
  • [5] Combining SWAPs and Remote CNOT Gates for Quantum Circuit Transformation
    Niemann, Philipp
    Mueller, Luca
    Drechsler, Rolf
    2021 24TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD 2021), 2021, : 495 - 501
  • [6] Quantum circuit syntheses of Boolean matrix multiplication using only CNOT gates
    Zheng, Yuanmeng
    Luo, Qingbin
    Li, Qiang
    Lv, Yi
    Liao, Haoyu
    Ding, Lang
    Shen, Jinan
    PHYSICA SCRIPTA, 2024, 99 (11)
  • [7] Optical CNOT gates with Quantum Interrogation
    Garcia-Escartin, Juan Carlos
    Chamorro-Posada, Pedro
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING (QCMC), 2009, 1110 : 399 - 402
  • [8] Electric circuits for universal quantum gates and quantum Fourier transformation
    Ezawa, Motohiko
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [9] Estimation of the depth of reversible circuits consisting of NOT, CNOT and 2-CNOT gates
    Zakablukov D.V.
    Moscow University Mathematics Bulletin, 2016, 71 (3) : 89 - 97
  • [10] Optimization of Quantum Boolean Circuits by Relative-Phase Toffoli Gates
    Kuroda, Shohei
    Yamashita, Shigeru
    REVERSIBLE COMPUTATION, 2022, : 20 - 27