On the new sine-Gordon solitons of the generalized Korteweg-de Vries and modified Korteweg-de Vries models via beta operator

被引:0
|
作者
Wang, Yaya [1 ]
Raihen, Md Nurul [2 ,4 ]
Ilhan, Esin [3 ]
Baskonus, Haci Mehmet [4 ]
机构
[1] Binzhou Polytech, Dept Informat Engn, Binzhou 256600, Peoples R China
[2] Univ Toledo, Dept Math & Stat, Toledo, OH 43606 USA
[3] Kirsehir Ahi Evran Univ, Fac Engn & Architecture, Kirsehir, Turkiye
[4] Harran Univ, Dept Math & Sci Educ, Sanliurfa, Turkiye
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 03期
关键词
gKdV equation; mKdV equation; beta operator; analytical method; analytic solutions Mathematics Subject Classification; LAW NONLINEARITY; KDV EQUATION; WAVE; BURGERS;
D O I
10.3934/math.2025252
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we applied the sine-Gordon expansion method (SGEM) and the rational sine-Gordon expansion method (RSGEM) for obtaining some new analytical solutions of the (2+1)- dimensional generalized Korteweg-de Vries (gKdV) and modified Korteweg-de Vries (mKdV) equations with a beta operator. The sine-Gordon expansion method (SGEM) has recently been extended to a rational form, referred to as the rational sine-Gordon expansion method (RSGEM). By applying a specific transformation, the equations are reduced to a nonlinear ordinary differential equation (NODE), allowing for the derivation of analytical solutions in various forms, including complex, hyperbolic, rational, and exponential. All these solutions are expressed through periodic functions using SGEM and RSGEM. The physical significance of the parametric dependencies of these solutions is also examined. Additionally, several simulations, including three-diemensional (3D) visualizations and revolutionary wave behaviors, are presented, based on different parameter selections. Revolutionary surfaces, defined by height and radius as independent variables, are extracted to further illustrate the wave dynamics.
引用
收藏
页码:5456 / 5479
页数:24
相关论文
共 50 条
  • [11] Solitons of the complex modified Korteweg-de Vries hierarchy
    Kudryashov, Nikolay A.
    CHAOS SOLITONS & FRACTALS, 2024, 184
  • [12] Connections defining representations of zero curvature and the solitons of sine-Gordon and Korteweg-de Vries equations
    A. K. Rybnikov
    Russian Journal of Mathematical Physics, 2011, 18 : 195 - 210
  • [13] GENERALIZED KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    MUKASA, T
    IINO, R
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (09): : 921 - &
  • [15] New Positon, Negaton, and Complexiton Solutions for a Coupled Korteweg-de Vries - Modified Korteweg-de Vries System
    Hu, Hengchun
    Yang, Mingyuan
    Zhang, Ling
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (6-7): : 347 - 354
  • [16] Modified Korteweg-de Vries surfaces
    Tek, Suleyman
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (01)
  • [17] ON THE (GENERALIZED) KORTEWEG-DE VRIES EQUATION
    KENIG, CE
    PONCE, G
    VEGA, L
    DUKE MATHEMATICAL JOURNAL, 1989, 59 (03) : 585 - 610
  • [18] On the Modified Korteweg-De Vries Equation
    Hayashi, Nakao
    Naumkin, Pavel
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (03) : 197 - 227
  • [19] Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation
    Wang, Pan
    Tian, Bo
    Liu, Wen-Jun
    Jiang, Yan
    Xue, Yue-Shan
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (09):
  • [20] Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation
    Pan Wang
    Bo Tian
    Wen-Jun Liu
    Yan Jiang
    Yue-Shan Xue
    The European Physical Journal D, 2012, 66