On the new sine-Gordon solitons of the generalized Korteweg-de Vries and modified Korteweg-de Vries models via beta operator

被引:0
|
作者
Wang, Yaya [1 ]
Raihen, Md Nurul [2 ,4 ]
Ilhan, Esin [3 ]
Baskonus, Haci Mehmet [4 ]
机构
[1] Binzhou Polytech, Dept Informat Engn, Binzhou 256600, Peoples R China
[2] Univ Toledo, Dept Math & Stat, Toledo, OH 43606 USA
[3] Kirsehir Ahi Evran Univ, Fac Engn & Architecture, Kirsehir, Turkiye
[4] Harran Univ, Dept Math & Sci Educ, Sanliurfa, Turkiye
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 03期
关键词
gKdV equation; mKdV equation; beta operator; analytical method; analytic solutions Mathematics Subject Classification; LAW NONLINEARITY; KDV EQUATION; WAVE; BURGERS;
D O I
10.3934/math.2025252
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we applied the sine-Gordon expansion method (SGEM) and the rational sine-Gordon expansion method (RSGEM) for obtaining some new analytical solutions of the (2+1)- dimensional generalized Korteweg-de Vries (gKdV) and modified Korteweg-de Vries (mKdV) equations with a beta operator. The sine-Gordon expansion method (SGEM) has recently been extended to a rational form, referred to as the rational sine-Gordon expansion method (RSGEM). By applying a specific transformation, the equations are reduced to a nonlinear ordinary differential equation (NODE), allowing for the derivation of analytical solutions in various forms, including complex, hyperbolic, rational, and exponential. All these solutions are expressed through periodic functions using SGEM and RSGEM. The physical significance of the parametric dependencies of these solutions is also examined. Additionally, several simulations, including three-diemensional (3D) visualizations and revolutionary wave behaviors, are presented, based on different parameter selections. Revolutionary surfaces, defined by height and radius as independent variables, are extracted to further illustrate the wave dynamics.
引用
收藏
页码:5456 / 5479
页数:24
相关论文
共 50 条
  • [41] Operator splitting methods for generalized Korteweg-de Vries equations
    Holden, H
    Karlsen, KH
    Risebro, NH
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 153 (01) : 203 - 222
  • [42] SOLUTION OF A GENERALIZED KORTEWEG-DE VRIES EQUATION
    TAGARE, SG
    CHAKRABARTI, A
    PHYSICS OF FLUIDS, 1974, 17 (06) : 1331 - 1332
  • [43] Generalized inversion of the Korteweg-de Vries equation
    Muccino, JC
    Bennett, AF
    DYNAMICS OF ATMOSPHERES AND OCEANS, 2002, 35 (03) : 227 - 263
  • [44] Nonautonomous Soliton Solutions of the Modified Korteweg-de Vries-Sine-Gordon Equation
    Popov, S. P.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (11) : 1929 - 1937
  • [45] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Jia, Chaohua
    Zhang, Bing-Yu
    ACTA APPLICANDAE MATHEMATICAE, 2012, 118 (01) : 25 - 47
  • [46] STOCHASTIC MODIFIED KORTEWEG-DE VRIES EQUATION
    BLASZAK, M
    ACTA PHYSICA POLONICA A, 1986, 70 (05) : 503 - 515
  • [47] ANALYSIS OF A MODIFIED KORTEWEG-DE VRIES EQUATION
    LEO, M
    LEO, RA
    SOLIANI, G
    PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1475 - 1466
  • [48] MODIFIED KORTEWEG-DE VRIES EQUATION IN ELECTROHYDRODYNAMICS
    PERELMAN, TL
    FRIDMAN, AK
    ELYASHEV.MM
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1974, 66 (04): : 1316 - 1323
  • [49] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [50] New fractional derivatives applied to the Korteweg-de Vries and Korteweg-de Vries-Burger's equations
    Saad, Khaled M.
    Baleanu, Dumitru
    Atangana, Abdon
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 5203 - 5216