On the new sine-Gordon solitons of the generalized Korteweg-de Vries and modified Korteweg-de Vries models via beta operator

被引:0
|
作者
Wang, Yaya [1 ]
Raihen, Md Nurul [2 ,4 ]
Ilhan, Esin [3 ]
Baskonus, Haci Mehmet [4 ]
机构
[1] Binzhou Polytech, Dept Informat Engn, Binzhou 256600, Peoples R China
[2] Univ Toledo, Dept Math & Stat, Toledo, OH 43606 USA
[3] Kirsehir Ahi Evran Univ, Fac Engn & Architecture, Kirsehir, Turkiye
[4] Harran Univ, Dept Math & Sci Educ, Sanliurfa, Turkiye
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 03期
关键词
gKdV equation; mKdV equation; beta operator; analytical method; analytic solutions Mathematics Subject Classification; LAW NONLINEARITY; KDV EQUATION; WAVE; BURGERS;
D O I
10.3934/math.2025252
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we applied the sine-Gordon expansion method (SGEM) and the rational sine-Gordon expansion method (RSGEM) for obtaining some new analytical solutions of the (2+1)- dimensional generalized Korteweg-de Vries (gKdV) and modified Korteweg-de Vries (mKdV) equations with a beta operator. The sine-Gordon expansion method (SGEM) has recently been extended to a rational form, referred to as the rational sine-Gordon expansion method (RSGEM). By applying a specific transformation, the equations are reduced to a nonlinear ordinary differential equation (NODE), allowing for the derivation of analytical solutions in various forms, including complex, hyperbolic, rational, and exponential. All these solutions are expressed through periodic functions using SGEM and RSGEM. The physical significance of the parametric dependencies of these solutions is also examined. Additionally, several simulations, including three-diemensional (3D) visualizations and revolutionary wave behaviors, are presented, based on different parameter selections. Revolutionary surfaces, defined by height and radius as independent variables, are extracted to further illustrate the wave dynamics.
引用
收藏
页码:5456 / 5479
页数:24
相关论文
共 50 条
  • [31] Korteweg-de Vries surfaces
    Gurses, Metin
    Tek, Suleyman
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 11 - 22
  • [32] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313
  • [33] Scattering of solitons by dislocations in the modified Korteweg de Vries–sine-Gordon equation
    S. P. Popov
    Computational Mathematics and Mathematical Physics, 2015, 55 : 2014 - 2024
  • [34] The superposition of algebraic solitons for the modified Korteweg-de Vries equation
    Chow, K. W.
    Wu, C. F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (01) : 49 - 52
  • [35] Helical solitons in vector modified Korteweg-de Vries equations
    Pelinovsky, Dmitry E.
    Stepanyants, Yury A.
    PHYSICS LETTERS A, 2018, 382 (44) : 3165 - 3171
  • [36] KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (06): : 399 - 401
  • [37] Bifurcations in the Generalized Korteweg-de Vries Equation
    Kashchenko, S. A.
    Preobrazhenskaya, M. M.
    RUSSIAN MATHEMATICS, 2018, 62 (02) : 49 - 61
  • [38] On the Generalized Nonlinear Korteweg-De Vries Equation
    Gladkov, S. O.
    TECHNICAL PHYSICS, 2024, : 2336 - 2338
  • [39] On solitary-wave solutions for the coupled Korteweg-de Vries and modified Korteweg-de Vries equations and their dynamics
    Hong, WP
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (3-4): : 125 - 132
  • [40] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Chaohua Jia
    Bing-Yu Zhang
    Acta Applicandae Mathematicae, 2012, 118 : 25 - 47