Cascaded Frequency-Encoded Multi-Scale Neural Fields for Sparse-View CT Reconstruction

被引:0
|
作者
Wu, Jia [1 ,2 ]
Lin, Jinzhao [1 ]
Pang, Yu [3 ]
Jiang, Xiaoming [4 ]
Li, Xinwei [4 ]
Meng, Hongying [5 ]
Luo, Yamei [6 ]
Yang, Lu [7 ]
Li, Zhangyong [4 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Southwest Med Univ, Sch Med Informat & Engn, Luzhou 646000, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Sch Optoelect Engn, Chongqing 400065, Peoples R China
[4] Chongqing Univ Posts & Telecommun, Chongqing Engn Res Ctr Med Elect & Informat Techno, Chongqing 400065, Peoples R China
[5] Brunel Univ London, Dept Elect & Elect Engn, Uxbridge UB8 3PH, England
[6] Southwest Med Univ, Sch Med Informat & Engn, Luzhou 646000, Peoples R China
[7] Southwest Med Univ, Affiliated Hosp, Dept Radiol, Luzhou 646000, Peoples R China
基金
中国国家自然科学基金;
关键词
Image reconstruction; Computed tomography; Estimation; Iterative methods; Optimization; Electronic mail; Refining; Neural networks; Image quality; Telecommunications; image reconstruction; iterative unfolding network; neural fields representation; sparse-view; NETWORK;
D O I
10.1109/TCI.2025.3536078
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse-view computed tomography aims to reduce radiation exposure but often suffers from degraded image quality due to insufficient projection data. Traditional methods struggle to balance data fidelity and detail preservation, particularly in high-frequency regions. In this paper, we propose a Cascaded Frequency-Encoded Multi-Scale Neural Fields (Ca-FMNF) framework. We reformulate the reconstruction task as refining high-frequency residuals upon a high-quality low-frequency foundation. It integrates a pre-trained iterative unfolding network for initial low-frequency estimation with a FMNF to represent high-frequency residuals. The FMNF parameters are optimized by minimizing the discrepancy between the measured projections and those estimated through the imaging forward model, thereby refining the residuals based on the initial estimation. This dual-stage strategy enhances data consistency and preserves fine structures. The extensive experiments on simulated and clinical datasets demonstrate that our method achieves the optimal results in both quantitative metrics and visual quality, effectively reducing artifacts and preserving structural details.
引用
收藏
页码:237 / 250
页数:14
相关论文
共 50 条
  • [31] A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction
    Zhang, Pengcheng
    Li, Kunpeng
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 226
  • [32] Combining convolutional sparse coding with total variation for sparse-view CT reconstruction
    Li, Xuru
    Li, Yu
    Chen, Ping
    Li, Fuzhong
    APPLIED OPTICS, 2022, 61 (06) : C116 - C124
  • [33] Deep-Neural-Network-Based Sinogram Synthesis for Sparse-View CT Image Reconstruction
    Lee, Hoyeon
    Lee, Jongha
    Kim, Hyeongseok
    Cho, Byungchul
    Cho, Seungryong
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (02) : 109 - 119
  • [34] MDST: multi-domain sparse-view CT reconstruction based on convolution and swin transformer
    Li, Yu
    Sun, XueQin
    Wang, SuKai
    Li, XuRu
    Qin, YingWei
    Pan, JinXiao
    Chen, Ping
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (09):
  • [35] Sparse-View Spectral CT Reconstruction and Material Decomposition Based on Multi-Channel SGM
    Liu, Yuedong
    Zhou, Xuan
    Wei, Cunfeng
    Xu, Qiong
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (10) : 3425 - 3435
  • [36] Sparse-view CT reconstruction based on gradient directional total variation
    Qu, Zhaoyan
    Zhao, Xiaojie
    Pan, Jinxiao
    Chen, Ping
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2019, 30 (05)
  • [37] DuDoTrans: Dual-Domain Transformer for Sparse-View CT Reconstruction
    Wang, Ce
    Shang, Kun
    Zhang, Haimiao
    Li, Qian
    Zhou, S. Kevin
    MACHINE LEARNING FOR MEDICAL IMAGE RECONSTRUCTION (MLMIR 2022), 2022, 13587 : 84 - 94
  • [38] Artifact Removal using Improved GoogLeNet for Sparse-view CT Reconstruction
    Shipeng Xie
    Xinyu Zheng
    Yang Chen
    Lizhe Xie
    Jin Liu
    Yudong Zhang
    Jingjie Yan
    Hu Zhu
    Yining Hu
    Scientific Reports, 8
  • [39] An Adaptive Proximal Point Algorithm for Sparse-View CT Image Reconstruction
    Zhu Y.
    Chen M.-Z.
    Chen Y.
    Yu G.-H.
    Wei L.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2019, 48 (02): : 228 - 232
  • [40] A Dual-Domain Diffusion Model for Sparse-View CT Reconstruction
    Yang, Chun
    Sheng, Dian
    Yang, Bo
    Zheng, Wenfeng
    Liu, Chao
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1279 - 1283